×
09.03.2020
220.018.0ac7

Результат интеллектуальной деятельности: Способ получения титаната натрия

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения титаната натрия NaTiO, который может быть использован в качестве эффективного анодного материала литиевых и натриевых источников тока, фотокатализатора в ультрафиолетовом и видимом диапазоне света, газочувствительного сенсора для определения влажности воздуха, сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите. Способ включает получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, отличающийся тем, что в качестве титансодержащего соединения используют хлорид титана состава TiClи 3,5-15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl : NaOH = 1:(10÷40), а гидротермальную обработку осуществляют при температуре 140–160°С и избыточном давлении 360–617 кПа в течение 24-26 ч. Технический результат заключается в простоте и технологичности способа, обеспечивающего высокую чистоту конечного продукта за счет получения однофазного продукта, не содержащего примесных фаз. 1 ил., 3 пр.

Изобретение относится к способам получения оксидных материалов, в частности к способу получения титаната натрия, который может быть использован в качестве эффективного анодного материала литиевых батарей (Zhu H., Yang K., Lan H. et al. Electrochemical kinetics of Na2Ti3O7 as anode material for lithium-ion batteries // J. Electroanalyt. Chem. 2017. V. 788. P. 203–209) и натриевых источников тока (Yan X., Sun D., Jiang J. et al. Self-assembled twine-like Na2Ti3O7 nanostructure as advanced anode for sodium-ion batteries // J. Alloys Compd. 2017. V. 697. P. 208-214), фотокатализатора в ультрафиолетовом и видимом диапазоне света (Chang Y.-C., Lin J.-C., Wu S.-H. One-step growth of Na2Ti3O7 nanorods for enhanced photocatalytic activities and recyclability // J. Alloys Compd. 2018. V. 749. P. 955-960), газочувствительного сенсора для определения влажности воздуха (Zhang Y., Fu W., Yang H. A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery // Sensors Actuators: B. Chem. 2008. V. 135. P. 317–321), сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите (Jiang Y., Zhang P., Jin H. et al. Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage // J. Membr. Sci. 2019. V. 583. P. 190–199).

Известен способ получения титаната натрия, включающий растворение порошка металлического титана в смеси водного раствора пероксида водорода и гидроксида аммония, взятых при соотношении 4:1, при соотношении Ti : H2O = 3 : (5÷20), с последующим добавлением к полученному раствору с концентрацией титана 0.2 М гликолевой кислоты HOOCCH2OH в молярном соотношении Ti : гликолевая кислота = 2 : 3, а затем реакционную массу сушат на масляной бане при температуре 80 - 100°С. Полученное воздушно-сухое соединение растворяют в воде, добавляют натрийсодержащее соединение (ацетат натрия CH3COONa или карбонат натрия Na2CO3, или гидроксид натрия NaOH, или оксалат натрия Na2C2O4, или нитрат натрия NaNO3) при молярном соотношении Ti : Na = 10 : 7. Полученную реакционную массу сушат на масляной бане до получения воздушно-сухого препарата, а затем отжигают при температуре 700 - 800°С в течение 6 - 10 ч в атмосфере воздуха или инертной атмосфере. (Appl.CN108455663; МПК C01G23/00, H01M10/054, H01M4/485; 2018 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования большого количества химических реагентов.

Известен способ получения титаната натрия с использованием порошка титановой кислоты, как источника титана. Способ включает несколько стадий. На первой стадии 0.5 – 1 г поверхностно-активного вещества (цитрат натрия Na3C6H5O7 или олеат натрия NaC18H33O2, или стеарат натрия NaC18H35O2) растворяют в 30 – 70 мл воды, затем при перемешивании добавляют раствор натрийсодержащего соединения (гидроксид натрия NaOH или карбонат натрия Na2CO3, или гидрокарбонат натрия NaHCO3) с концентрацией натрия 0.12 – 0.6 М. К полученному раствору добавляют порошок титановой кислоты, содержащий натрий в молярном соотношении Na : Ti = (2.2 ÷ 2.8) : 3, перемешивая реакционную массу в течение 0.5 – 3 ч. Образующуюся суспензию белого цвета подвергают гидротермальной обработке при температуре 120 - 200°С в течение 6 - 24 ч. В результате получают осадок, который сушат с использованием лиофилизации, а затем подвергают двухступенчатому отжигу в инертной атмосфере: сначала при 300 - 400°С в течение 0.5 - 2 ч, а затем при температуре 500 - 800°С в течение 1 - 4 ч, с последующей промывкой конечного продукта водным раствором соляной кислоты HCl до нейтральной среды и его лиофильной сушкой. (Appl. CN109626415; МПК C01G23/00, H01M10/054, H01M4/485; 2019 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования лиофилизации для сушки осадков, а также большого количества химических реагентов.

Известен способ получения титаната натрия с использованием тетрабутоксититаната (C4H9O)4Ti, как источника титана. В известном способе титанат натрия получают в три стадии. На первой стадии в термостатированную ледяную уксусную кислоту CH3COOH добавляют тетерабутоксититанат (C4H9O)4Ti в объемном соотношении CH3COOH : (C4H9O)4Ti = 50 : (1 ÷ 5), после чего проводят тепловую обработку на воздухе полученного молочно-белого раствора при температуре 120 – 200°С в течение 5 – 12 ч. В результате образуется диоксид титана TiO2 в виде геля, который центрифугируют несколько раз с добавлением воды до установления нейтральной кислотности, а затем сушат при температуре 50°С в течение 24 – 36 ч. На второй стадии проводят гидротермальную обработку реакционного раствора при температуре 180 – 250°С в течение 8 – 15 ч, полученного растворением при непрерывном перемешивании порошка свежеприготовленного диоксида титана TiO2 в 1 – 5 М водном растворе гидроксида натрия NaOH. Полученный осадок фильтруют и сушат на воздухе при температуре 80°С в течение 24 – 36 ч. На третьей стадии воздушно-сухой осадок отжигают на воздухе при температуре 500°С в течение 1 – 3 ч. (Appl. CN108134075; МПК H01M4/485; 2018 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования большого количества химических реагентов.

Наиболее близким к предлагаемому техническому решению является способ получения титаната натрия. В известном способе порошок оксида титана TiO2 при перемешивании добавляют к 0.5 - 20 М водному раствору гидроксида натрия NaOH в весовом соотношении NaOH : TiO2 = (1 ÷ 100) : 1, после чего реакционную смесь подвергают ультразвуковой обработке в течение 10 – 300 мин. Затем полученную суспензию помещают в автоклав и выдерживают при температуре 80 - 200°С в течение 0.5 - 24 ч. Конечный продукт промывают этанолом, водой и сушат на воздухе. (Appl. CN109148876; МПК C01G23/00, H01M10/54, H01M/485, H01M4/58; 2019 г.) (прототип).

Недостатком известного способа получения титаната натрия является сложность процесса за счет использования ультразвукового оборудования, не обеспечивающего, в частности полную гомогенизацию реакционной массы вследствие неравномерного воздействия ультразвуковых колебаний на обрабатываемую смесь.

Таким образом, перед авторами стояла задача разработать простой и технологичный способ получения титаната натрия, обеспечивающий высокую чистоту конечного продукта.

Поставленная задача решена в предлагаемом способе получения титаната натрия, включающем получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, в котором в качестве титансодержащего соединения используют хлорид титана состава TiCl3 и 3.5 - 15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl3 : NaOH = 1 : (10 ÷ 40), а гидротермальную обработку осуществляют при температуре 140 – 160°С и избыточном давлении 360 – 617 кПа в течение 24 - 26 ч.

В настоящее время из патентной и научно-технической литературы не известен одностадийный способ получения титаната натрия с использованием в качестве титансодержащего реагента хлорида титана состава TiCl3 в предлагаемых авторами условиях осуществления гидротермального синтеза.

Исследования, проведенные авторами, позволили сделать вывод, что титанат натрия может быть получен простым и технологичным способом при условии использования в качестве титансодержащего соединения хлорида титана состава TiCl3. Использование хлорида титана состава TiCl3 обеспечивает возможность ведения процесса синтеза в условиях гомогенного жидкофазного взаимодействия химических ингредиентов. При этом исключается необходимость в использовании процесса гомогенизации реакционной массы. Кроме того появляется возможность формирования хорошо окристаллизованного порошка конечного продукта титаната натрия без проведения кальцинирования промежуточного продукта. Следует отметить, что дополнительный высокотемпературный отжиг, как правило, применяется для получения соединений с упорядоченной кристаллической структурой. В противном случае образуется аморфная фаза.

Авторами экспериментальным путем было установлено, что существенным фактором, определяющим состав и структуру конечного продукта является использование хлорида титана состава TiCl3 и гидроксида натрия в молярном соотношении TiCl3 : NaOH = 1 : (10 ÷ 40). При уменьшении молярного соотношения исходных компонентов реакционной массы (содержание NaOH по отношению к TiCl3 меньше, чем 10) в продуктах реакции наблюдается в качестве примеси диоксид титана TiO2. При увеличении молярного соотношения исходных компонентов реакционной массы (содержание NaOH по отношению к TiCl3 больше, чем 40) дополнительно с основной фазой Na2Ti3O7 образуются гидроксиды титанатов натрия составов Na2Ti3O6(OH)·2H2O, Na2Ti2O4(OH)2. При уменьшении температуры гидротермальной обработки ниже 140°С и избыточного давления ниже 360 кПа образуется рентгеноаморфная фаза. Также при повышении температуры гидротермальной обработки выше 160°С и избыточного давления выше 617 кПа в конечном продукте появляются в качестве примесной фазы диоксид титана TiO2.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок гидроксида натрия NaOH растворяют в воде с получением 3.5 - 15 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к раствору хлорида титана состава TiCl3 в молярном соотношении TiCl3 : NaOH = 1 : (10 ÷ 40). Затем гомогенную смесь подвергают гидротермальной обработке при температуре 140 – 160°С и избыточном давлении 360 – 617 кПа в течение 24 – 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. Аттестацию конечного продукта проводят с помощью рентгенофазового анализа (РФА). По данным РФА полученный порошок белого цвета является титанатом натрия Na2Ti3O7 моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 20 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 10 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 28. Затем гомогенную массу подвергают гидротермальной обработке при температуре 160°С С и избыточном давлении 617 кПа в течение 24 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60. На фиг.1 представлена рентгенограмма Na2Ti3O7.

Пример 2. Берут 7.1 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 3.5 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 10. Затем гомогенную массу подвергают гидротермальной обработке при температуре 150°С С и избыточном давлении 475 кПа в течение 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Пример 3. Берут 30 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 15 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 40. Затем гомогенную массу подвергают гидротермальной обработке при температуре 140°С С и избыточном давлении 360 кПа в течение 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Таким образом, авторами предлагается простой и технологичный способ получения титаната натрия, обеспечивающий высокую чистоту конечного продукта за счет получения однофазного продукта, не содержащего примесных фаз.

Способ получения титаната натрия, включающий получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, отличающийся тем, что в качестве титансодержащего соединения используют хлорид титана состава TiClи 3,5-15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl : NaOH = 1:(10÷40), а гидротермальную обработку осуществляют при температуре 140–160°С и избыточном давлении 360–617 кПа в течение 24-26 ч.
Способ получения титаната натрия
Источник поступления информации: Роспатент

Показаны записи 61-70 из 99.
30.03.2019
№219.016.f9e8

Способ получения диэлектрического материала на основе силиката цинка

Изобретение относится к получению диэлектрических материалов на основе силиката цинка со структурой виллемита, которые могут быть использованы для изготовления керамики, применяемой в конденсаторах, входящих в электрические схемы с целью накопления электрического заряда, подавления пульсаций,...
Тип: Изобретение
Номер охранного документа: 0002683432
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором...
Тип: Изобретение
Номер охранного документа: 0002683879
Дата охранного документа: 02.04.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53bf

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную...
Тип: Изобретение
Номер охранного документа: 0002687737
Дата охранного документа: 16.05.2019
08.06.2019
№219.017.7580

Способ получения порошковой композиции на основе оксикарбидов алюминия

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении упрочняющих и легирующих добавок для алюминиевых сплавов, углеродсодержащих огнеупорных, керамических и абразивных материалов. Сначала готовят исходную смесь гидроксида алюминия и сажи путём осаждения...
Тип: Изобретение
Номер охранного документа: 0002690918
Дата охранного документа: 06.06.2019
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
23.08.2019
№219.017.c29f

Средство для контрастирования при рентгенодиагностике

Изобретение относится к рентгенологии. Предложено средство для контрастирования при рентгенодиагностике, содержащее (масс. %): наночастицы танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий,...
Тип: Изобретение
Номер охранного документа: 0002697847
Дата охранного документа: 21.08.2019
09.10.2019
№219.017.d3a2

Способ получения формиата меди (ii)

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для...
Тип: Изобретение
Номер охранного документа: 0002702227
Дата охранного документа: 07.10.2019
04.11.2019
№219.017.de29

Способ получения сложного литиевого танталата лантана и кальция

Изобретение относится к получению порошка сложного литиевого танталата лантана и кальция состава LiCaLaTaO, используемого в качестве одного из основных компонентов литий-ионной батареи. Способ включает добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов...
Тип: Изобретение
Номер охранного документа: 0002704990
Дата охранного документа: 01.11.2019
27.11.2019
№219.017.e6eb

Способ переработки бокситов

Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое...
Тип: Изобретение
Номер охранного документа: 0002707223
Дата охранного документа: 25.11.2019
Показаны записи 11-17 из 17.
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ed9c

Способ получения композита ортованадат лития/углерод

Изобретение относится к получению композита ортованадат лития/углерод LiVO/C в мелкодисперсном состоянии, который может быть использован в качестве эффективного анодного материала химических источников тока. Способ получения указанного композита включает гидротермальную обработку реакционной...
Тип: Изобретение
Номер охранного документа: 0002683094
Дата охранного документа: 26.03.2019
08.02.2020
№220.018.0040

Способ получения наносфер оксида железа (iii)

Изобретение относится к технологии получения наночастиц оксида железа (III) α-FeO, который может быть использован в качестве пигмента, катализатора, сенсибилизатора солнечных батарей, эффективного анодного материала химических источников тока, газочувствительного сенсора для определения паров...
Тип: Изобретение
Номер охранного документа: 0002713594
Дата охранного документа: 05.02.2020
23.04.2023
№223.018.5207

Ионоселективный материал для определения ионов калия

Изобретение предназначено для прямого потенциометрического определения концентрации ионов калия в водных растворах и может быть использовано для анализа природных и сточных вод, биологических жидкостей. Ионоселективный материал для определения ионов калия содержит диоксид молибдена и углерод...
Тип: Изобретение
Номер охранного документа: 0002732249
Дата охранного документа: 14.09.2020
30.05.2023
№223.018.7382

Способ получения микросфер оксида железа feo

Изобретение относится к металлургии, в частности к способу получения микросфер оксида железа FeO, который может быть использован в качестве эффективного анодного материала химических источников тока, цианобактерицидного реагента, предотвращающего размножение сине-зеленых водорослей, сенсорного...
Тип: Изобретение
Номер охранного документа: 0002762433
Дата охранного документа: 21.12.2021
+ добавить свой РИД