04.04.2019
219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором производят измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам. При этом на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, кроме того до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча. Технический результат - определение линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок.

Известен способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, в качестве которой используют один из элементов оптической схемы эллипсометра - плоскопараллельную пластину одноосного кристалла (компенсатор). Для регулирования температуры компенсатора применялась «термостатированная» ячейка, встроенная в оптическую систему. После определения оптических параметров Δ и ψ линейный коэффициент теплового расширения α пластины определяли из разницы толщин α=(d-d0)/d0ΔT , где d и d0 – толщины пластины при различных температурах, ΔT – разница температур). Толщина напрямую связана с параметрами Tc и ϭс компенсатора (параметры, характеризующие изменение световой волны при ее прохождении сквозь пластинку), и определялась из номограмм в координатах Tcс, построенных для фиксированных значений температур исследуемого диапазона (18 – 30°С). В известном способе измерения температурных зависимостей параметров пластины проводились на пропускание. Толщина пластины 470, 850, 2400 мкм. (Хасанов Т. Поляриметрия и эллипсометрия в исследовании поляризующих оптических систем: диссертация ... доктора физико-математических наук: 01.04.05 / Хасанов Тохир; [Место защиты: Ин-т автоматики и электрометрии СО РАН]. - Новосибирск, 2010. - 230 с. : ил.).

Известный способ предназначен только для пластин одноосных кристаллов, поскольку накладывает ряд ограничений на исследуемый объект. Среди этих ограничений – анизотропия пластины, необходимость отдельного ее закрепления перпендикулярно падающему лучу, а также очень точная юстировка всех элементов оптической системы. Кроме того, способ обеспечивает возможность измерения линейного коэффициента теплового расширения пленок толщиной более нескольких сот микрометров.

Таким образом, перед авторами стояла задача разработать способ определения линейного коэффициента теплового расширения тонких прозрачных пленок, толщиной менее одного мкм.

Поставленная задача решена в способе определения линейного коэффициента теплового расширения тонкой прозрачной пленки путем измерения эллипсометрических параметров Δ и ψ при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам, отличающийся тем, что на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, при этом до нанесения пленки определяют оптические параметры Δ и ψ отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную на столике эллипсометра, конструкция которой обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры Δ и ψ, отраженного от поверхности системы пленка-подложка светового луча.

В настоящее время из научно-технической и патентной литературы не известен способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки с использованием эллипсометрии, основанной на отражении светового луча от поверхности исследуемого объекта – системы подложка-пленка, в предлагаемых авторами условиях.

Предлагаемый способ заключается в измерении эллипсометрических параметров Δ и ψ при комнатной температуре и при температуре T K на образце, представляющем собой аморфную кварцевую подложку толщиной 2,0-2,5 см с нанесенной путем вакуумного напыления тонкой прозрачной пленкой толщиной 150-1000 нм. До нанесения тонкой прозрачной пленки определяют оптические постоянные подложки: n2 – показатель преломления, k2 – коэффициент поглощения при комнатной температуре и при температуре T K из системы уравнений:

(1)

(2)

где: n0 – показатель преломления внешней среды, n2 – показатель преломления подложки, k2 – коэффициент поглощения подложки, φ0 – угол падения, и – эллипсометрические параметры чистой подложки, без пленки.

Полученные оптические постоянные вводят в основное уравнение эллипсометрии:

(3)

где: r01p и r12p - коэффициенты отражения Френеля для р-компоненты вектора электрического поля, относящиеся соответственно к границе между средами ε0 и ε1 и ε1 и ε2; r01s и г12s - коэффициенты отражения Френеля для s-компоненты, относящиеся соответственно к тем же границам, что и r01p и r12p. Коэффициенты отражения Френеля записывают в виде:

(4)

(5)

(6)

(7)

где:

; (8)

, (9)

здесь: ε2, ε1 , ε0 - диэлектрические проницаемости подложки, плёнки и среды (воздух или вакуум) соответственно; n2, n1, n0 - показатели преломления; k2, k1, k0 - коэффициенты поглощения (для воздуха k0 = 0); ω - частота света, с - скорость света в вакууме; d - толщина поверхностной плёнки. На основании решения основного уравнения эллипсометрии (3) и экспериментально измеренных эллипсометрических параметров Δ и ψ определяют показатель преломления пленки n1 и ее толщину при комнатной температуре (d0) и температуре T K (d), соответственно.

После определения толщин пленки d0 и d рассчитывают линейный коэффициент теплового расширения тонкой прозрачной пленки по формуле:

(10)

где ΔT=T-T0;

Предлагаемый способ иллюстрируется следующим примером.

Пример 1

Способом вакуумного термического испарения на установке ВУП 5М наносят тонкую прозрачную пленку Al2O3 толщиной 205 нм на подложку из плавленого кварца толщиной 2 см. Предварительно до нанесения пленки определяют оптические параметры Δ и ψ отраженного от поверхности подложки светового луча при начальной и конечной температуре и оптические постоянные подложки. Затем на лазерном эллипсометре ЛЭФ-3М измеряют эллипсометрические параметры Δ и ψ образца, помещенного в водоохлаждаемую камеру, установленную на столике эллипсометра (Акашев Л.А., Кононенко В.И., Кочедыков В.А. “Оптические свойства жидкого лантана”, Расплавы, 1988, 2, вып. 4, с. 53-57) и снабженную нагревателем 1 с теплозащитными экранами 2 (фиг.1) при комнатной температуре (295K) и температуре T=895K. Нагреватель представляет собой кварцевый цилиндр, на который намотаны молибденовая проволока диаметром 0,6 мм. Камера изготовлена из нержавеющей стали, ее кожух 3 охлаждается водой. На дне вакуумной камеры находится кварцевая пластина 4. В центре камеры на кварцевом столике установлен исследуемый образец 5. В верхней части камеры установлены хромель-алюмелевая термопара 6. В молибденовых экранах имеются отверстия для прохождения падающего и отраженного от поверхности системы подложка-пленка светового луча. Камера снабжена двумя окнами из плавленого кварца 7, закрепленными через вакуумные уплотнения (фиг.1). Откачка камеры осуществляется двумя вакуумными насосами: форвакуумным с улавливанием масла в азотной ловушке и магниторазрядным насосом НОРД-100. После охлаждения образца снова измеряют эллипсометрические параметры при T=295K и T=895K. Эту процедуру повторяют несколько раз, до тех пор, пока Δ и ψ остаются постоянными при каждой температуре. Измеренные при угле падения луча света φ=60° эллипсометрические параметры равны Δ=356°54´ и ψ=7°08´ (T=295K), что соответствует, согласно решению основного уравнения (3), толщине тонкой прозрачной пленки d0=2046Å. При температуре T=895K эти параметры равны Δ=354°50´ и ψ=6°58´, что соответствует толщине пленки d=2054Å.

В программу для решения основного уравнения эллипсометрии по определению толщин d0 и d (3) вводили следующие параметры: λ=0,6328мкм; φ=60°; n0=1; n1=1.78; k1=0; n2=1.46; k2=0. Здесь n0, n1, n2 – показатели преломления внешней среды (воздух), пленки (оксид алюминия), подложки (плавленый кварц), k1, k2 – коэффициенты поглощения пленки и подложки.

Линейный коэффициент теплового расширения тонкой прозрачной пленки рассчитывали по формуле:

(10)

Температурной зависимостью показателя преломления плавленого кварца пренебрегали, т.к. в указанной области температур:

(11)

Полученная величина линейного коэффициента теплового расширения тонкой прозрачной пленки Al2O3 α=6.52·10-6 K-1 согласуется с линейным КТР для корунда α= 6,66·10-6 K-1; сапфира α= 5,6·10-6 K-1.

Таким образом, авторами предлагается способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм.

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки путем измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам, отличающийся тем, что на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, при этом до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча.
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки
Источник поступления информации: Роспатент

Показаны записи 1-10 из 84.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 15.
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
25.08.2017
№217.015.d252

Устройство для засветки фотоэлектрических преобразователей солнечной батареи космического аппарата

Изобретение относится к средствам наземной эксплуатации солнечных батарей (СБ), в частности для проверки их работоспособности. Устройство содержит кожух, включающий корпуса (2) из термостойкой пластмассы со светодиодными излучателями (5). Со стороны, обращенной к СБ, закреплены откидные крышки...
Тип: Изобретение
Номер охранного документа: 0002621786
Дата охранного документа: 07.06.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.00dc

Способ определения показателя преломления оптически прозрачного материала

Изобретение относится к измерительной технике, а именно к способам оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения показателя преломления оптически прозрачных материалов. Предлагается способ определения показателя преломления оптически прозрачного...
Тип: Изобретение
Номер охранного документа: 0002629695
Дата охранного документа: 31.08.2017
05.07.2018
№218.016.6c2a

Способ определения оптических констант пленок химически активных металлов или их сплавов

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного...
Тип: Изобретение
Номер охранного документа: 0002659873
Дата охранного документа: 04.07.2018
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
29.05.2019
№219.017.6683

Технологическая крышка

Крышка предназначена для защиты солнечных батарей при наземной эксплуатации космических аппаратов различного назначения. Устройство (технологическая крышка), закрепленное на солнечной батарее космического аппарата содержит кожух с элементами крепления к каркасу солнечной батареи. Кожух...
Тип: Изобретение
Номер охранного документа: 0002375270
Дата охранного документа: 10.12.2009

Похожие РИД в системе