×
18.05.2019
219.017.53bf

Результат интеллектуальной деятельности: Способ получения биомедицинского материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см и частоте 35 кГц при Т = 40ºС в течение 0,5–1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1–5 часов. Вышеописанный способ получения биомедицинского материала на основе пористых металлических материалов является технологически простым, позволяющим сохранить биологическую активность гидроксиапатита и достичь равномерного и прочного покрытия не только на поверхности, но и по всему объему. 1 табл., 5 пр., 3 ил.

Изобретение относится к области медицины, в частности к способам получения костных имплантатов на основе пористых материалов с биоактивным покрытием.

Известен способ получения биомедицинского материала для создания костных имплантатов на основе пористого сплава титан-кобальт в режиме СВС, включающий приготовление экзотермической смеси исходных реагентов из порошка титана и кобальта, добавление в смесь не более 4 масс. % гидрида титана, не более 15 масс. % аморфного нанодисперсного порошка гидроксиапатита или аморфного нанокомпозита гидроксиапатита с биополимером природного происхождения, прессование из смеси порошков заготовки, размещение ее в реакторе СВС, предварительный нагрев заготовки до 350-580°C, инициирование процесса горения в инертной атмосфере с последующим выделением целевого продукта (патент RU № 2341293; МПК A61L27/04, A61L27/06, A61L27/24, A61F2/28; 2007 г.).

Однако известный способ является многостадийным, высокотемпературная обработка приводит к разложению биоактивного гидроксиапатита и поровое пространство сплава покрывается соединениями кальция, фосфора и кислорода, представляющими собой продукты его распада, биоактивность которых значительно ниже, чем у гидроксиапатита.

Известен способ изготовления внутритканевых эндопротезов на титановой основе, в котором изготовление имплантатов состоит из следующих стадий: многослойное плазменное напыление на металлическую основу имплантатов биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, а четвертый слой формируют на основе гидроксиапатита, далее имплантаты с многослойным биологическим активным покрытием помещают в емкость с раствором нитрата серебра (концентрация AgNO3 0,04%) помещенную в дополнительную емкость с водой, и проводят обработку со стороны поверхности напыленного многослойного биологического активного покрытия ультразвуковым излучением в течение 35 секунд при интенсивности ультразвука 9,6 Вт/см2 и частоте 22 кГц (патент RU № 2529262 С1; МПК A61L27/30; A61F2/02; C23C18/42; 27.09.2014 бюл.№27) (прототип).

Недостатком известного способа является многостадийность, сложность аппаратурного оформления, а также применение нитрата серебра, так как предельно допустимая концентрация азотнокислого серебра в воздухе рабочей зоны - 0,5 мг/м3 (ГОСТ 1277-75 Реактивы. Серебро азотнокислое), и ПДК для питьевой воды – 50 мкг/дм3 (второй класс опасности по ГОСТ 12.1.005), кроме того плазменное напыление частично разрушает (снижает биологическую активность) гидроксиапатита, так как местные перегревы (>800 °С) разрушают гидроксиапатит до трехкальциевого фосфата.

Таким образом, перед авторами была поставлена задача разработать простой способ получения биомедицинского материала, обеспечивающий как сохранение минерального состава биоактивного компонента – гидроксиапатита, так и заполняемость основы с хорошей адгезией нанесенного покрытия, при этом не используя агрессивных реагентов.

Поставленная задача решена в предлагаемом способе получения биомедицинского материала, включающем нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, в котором основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см2 и частоте 35 кГц в течение 0,5 – 1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1 – 5 часов.

В настоящее время не известен способ получения биомедицинского материала, в котором металлическую основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см2 и частоте 35 кГц в течение 0,5 – 1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1 – 5 часов.

В качестве металлических высокопористых основ авторы использовали: титан (Ti) пористости (45, 55%), пористый (85%) никелид титана (NiTi), пористую (91%) нержавеющая сталь и пористый (95%) никель (Ni). В качестве биологически активного покрытия 35-45% водная суспензия ультрадисперсного порошка гидроксиапатита, полученного осаждением из растворов (Патент RU № 2104924). Для нанесения покрытия на основу применяли низкотемпературный метод ультразвуковой обработки 35-45% водной суспензией порошка гидроксиапатита в ультразвуковой ванне «САПФИР 1.3 ТТЦ» (35 кГц) при T=40 °C в течение 0,5-1 часа. Проведенные авторами исследования позволили разработать способ получения биоактивного покрытия на пористом материале, позволяющий сохранить минеральный состав биоактивного компонента - гидроксиапатита (ГАП) наряду с хорошей адгезией нанесенного покрытия, которое оценивали методом центробежного отрыва (центрифуга CM-6M, ELMI; центростремительное ускорение 500 м/c2). Для достижения необходимого результата авторами предлагается способ последовательной, с промежуточной сушкой, 3-5 кратной ультразвуковой обработкой, в ходе которого осуществляют осаждение частиц ГАП из 35-45% водной суспензии ультрадисперсного порошка ГАП, добиваясь этим объемной пропитки и покрытие поверхности высокопористого материала равномерным слоем биоактивного материала. Авторами учитывался тот факт, что современные аддитивные технологии (3D-печать) позволяют осуществлять изготовление пористых материалов с поперечным сечением отверстий (пор) от 500 до 1000 мкм, которые могут быть использованы в качестве металлической основы при получении биомедицинских материалов.

При использовании суспензии с концентрацией менее 35% не происходит заполнения пористого материала суспензией, так как она вытекает перед сушкой, образуя незаполненные поры. Использование суспензии с концентрацией выше 45% ведет к значительному заполнению ближайших от поверхности пор, и не прохождение внутрь пористой основы, высокая вязкость затрудняет получение покрытия в порах по всему объему. Обработку в ультразвуковой ванне пористого материала в суспензии ГАП проводят 3-5-кратную, что позволяет достичь максимального содержания ГАП от массы каркаса в зависимости от исходной пористости основы. Увеличение количества пропиток приводит к зарастанию и снижению остеоинтеграционных свойств материала, а уменьшение мешает возможности создания сплошного биоактивного покрытия. Использование предлагаемого интервала интенсивности ультразвукового излучения объясняется следующими причинами: уменьшение менее 10 Вт/см2 ведет к вероятному несмачиванию суспензией гидроксиапатита всей поверхности пористого материала основы, увеличение более 13,9 Вт/см2 обусловливает избыточные затраты энергии.

Предлагаемый способ может быть осуществлен следующим образом.

Заготовку из пористого материала (титан пористости (45, 55%) или пористый никелид титана (85%) или пористая нержавеющая сталь (91%) или пористый никель (95%)) помещают в емкость с водной суспензией гидроксиапатита (ГАП) состава Ca10(PO4)6 (ОН)2 с концентрацией 35-45%, емкость устанавливают в ультразвуковую ванну и осуществляют обработку ультразвуковым излучением при интенсивности ультразвука 10,0-13,9 Вт/см2 и частоте 35 кГц в течение 0,5 – 1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта при комнатной температуре на воздухе в течение 1 – 5 часов. Получают материал с пористой металлической основой, пропитанной ГАП, при этом содержание ГАП составляет 20-60 масс.% от массы полученного материала.

Содержание ГАП от массы полученного материала определяют путем взвешивания образцов до и после обработки. Морфологию образующегося в процессе ультразвуковой пропитки материалов исследовали методом Брунауэра, Эммета и Тейлера (БЭТ) низкотемпературной адсорбцией азота на приборе Gemini VII 2390 VI.03 (V1.03 t), полученные данные представлены в таблице 1.

Таблица 1

Характеристики поверхности исходных пористых металлических материалов и после трехкратной пропитки 40% водной суспензией кристаллического ГАП

Исследуемый образец Sудельная, м2 Sпор, м2 Vпор, см3
Ti-45% 0.3256±0.0453 1.3652 0.000783
Ti-45%-ГАП 22.6126±0.0252 - -
NiTi 4.0907±0.0767 2.6199 0.001500
NiTi+ГАП 49.4604±0.0713 1.8226 0.000516

Микрофотографии образцов пористых материалов до и после покрытия (см. фиг.1, 2) получали на анализирующем сканирующем электронном микроскопе JSM 6390 LA (JEOL-Япония).

Прочность сцепления биоактивного покрытия с пористой металлической основой определяли методом центробежного отрыва (центрифуга CM-6M, ELMI; центростремительное ускорение 500 м/c2). По полученным методом центробежного отрыва данным была рассчитана адгезионная прочность покрытий на матрицах различной пористости (см. фиг.3) в соответствии с формулой

P= Fцентр./S = m ω2⋅r/S, где

P - адгезионная прочность, H/м2;

m - масса покрытия, кг;

ω - угловая скорость вращения в момент разрыва, с-2;

r – расстояние от центра масс до оси вращения центрифуги, м;

S – площадь контакта покрытия и подложки, м2.

Полученные результаты сопоставимы или превышают в несколько раз адгезионную прочность покрытий получаемых вакуумным импрегнированием (37-95 Н/м2; Е.А. Богданова, В.М. Скачков, А.Г. Широкова, И.Г. Григоров, Н.А. Сабирзянов. Влияние термического отжига на прочность биоактивного покрытия на пористом титане // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2016. Вып. 8. С. 64-68.)

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Образец пористого титана размером 10×10×4 мм (пористость 45%) погружают в емкость с водной суспензией ГАП состава Ca10(PO4)6 (ОН)2 с концентрацией 35%, которую помещают в ультразвуковую ванну и в течение 0,5 часа подвергают ультразвуковой обработке (интенсивность ультразвука 13,9 Вт/см2 и частота 35 кГц). После чего образцы сушат на воздухе при комнатной температуре в течение 5 часов, операцию повторяют 5 раз и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 20 масс.% от массы титана. На фиг.1 микроизображение поверхности титана пористости 45%: 1а) - исходный образец титана; 1б) - образец титана с покрытием ГАП.

Пример 2. Образец пористого титана полученного методом 3D-печати диаметром 12,5 мм и толщиной 6 мм (пористость 55%) погружают в емкость с водной суспензией ГАП состава Ca10(PO4)6 (ОН)2 с концентрацией 40%, которую помещают в ультразвуковую ванну и в течение 1,0 часа подвергают ультразвуковой обработке (интенсивность ультразвука 10,0 Вт/см2 и частота 35 кГц). После чего образец сушат на воздухе при комнатной температуре в течение 3 часов, операцию повторяют 3 раза и получают материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 26 масс.% от массы титана. На фиг.1 изображение поверхности титана пористости 55%: 2а) - исходный образец титана; 2б) - образец титана с покрытием ГАП.

Пример 3. Образец пористого никелида титана (NiTi) размером 10×10×4 мм (пористость 85%) погружают в емкость с водной суспензией ГАП состава Ca10(PO4)6 (ОН)2 с концентрацией 45%, которую помещают в ультразвуковую ванну и в течение 0,5 часа подвергают ультразвуковой обработке (интенсивность ультразвука 13,9 Вт/см2 и частота 35 кГц). После чего образцы сушат на воздухе при комнатной температуре в течение 1 часа, операцию повторяют 3 раза и получают пористый материал на основе никелида титана с покрытием ГАП, при этом содержание ГАП составляет 48 масс.% от массы материала. На фиг.1 микроизображение поверхности никелида титана пористости 85%: 3а) - исходный образец никелида титана; 3б) - образец NiTi с покрытием ГАП.

Пример 4. Образец пористой нержавеющей стали размером 10×10×4 мм (пористость 91%) погружают в емкость с водной суспензией ГАП состава Ca10(PO4)6 (ОН)2 с концентрацией 40%, которую помещают в ультразвуковую ванну и в течение 1 часа подвергают ультразвуковой обработке (интенсивность ультразвука 13,9 Вт/см2 и частота 35 кГц). После чего образец сушат на воздухе при комнатной температуре в течение 5 часов, операцию повторяют 4 раза и получают пористый материал на основе нержавеющей стали с покрытием ГАП, при этом содержание ГАП составляет 50 масс.% от массы материала. На фиг.2 микроизображение поверхности нержавеющей стали пористости 91%: 4а) - исходный образец титана; 4б) - образец титана с покрытием ГАП.

Пример 5. Образец пористого никеля (Ni) размером 10×10×4 мм (пористость 95%) погружают в емкость с водной суспензией ГАП состава Ca10(PO4)6 (ОН)2 с концентрацией 45%, который помещают в ультразвуковую ванну и в течение 0,5 часа подвергают ультразвуковой обработке (интенсивность ультразвука 13,9 Вт/см2 и частота 35 кГц). После чего образец сушат на воздухе при комнатной температуре в течение 5 часов, операцию повторяют 3 раза и получают пористый материал на основе никеля с покрытием ГАП, при этом содержание ГАП составляет 55 масс.% от массы материала. На фиг.2 микроизображение поверхности никеля пористости 95%: 5а) - исходный образец Ni; 5б) - образец Ni с покрытием ГАП.

Таким образом, авторами предлагается технологически простой способ получения биомедицинского материала на основе пористых металлических материалов, позволяющий сохранить биологическую активность ГАП за счет исключения высоких температур при обработке и достичь равномерного и прочного покрытия не только на поверхности, но и по всему объему.

Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, отличающийся тем, что основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см и частоте 35 кГц при Т = 40°С в течение 0,5–1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1–5 часов.
Способ получения биомедицинского материала
Способ получения биомедицинского материала
Способ получения биомедицинского материала
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 22.
10.07.2013
№216.012.544d

Твердый экстрагент для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002487184
Дата охранного документа: 10.07.2013
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6af0

Средство для фиксации съемных зубных протезов

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при протезировании больных для коррекции съемных зубных протезов в период адаптации, а также в процессе их постоянного использования. Предлагаемое средство для фиксации съемных зубных...
Тип: Изобретение
Номер охранного документа: 0002558934
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.78ca

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в...
Тип: Изобретение
Номер охранного документа: 0002599039
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.89db

Способ извлечения иттрия из водных солянокислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано в способе для извлечения и концентрирования иттрия из водных растворов. Способ извлечения иттрия из водных солянокислых растворов включает экстракцию смесью органической кислоты и керосина, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002602313
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.db20

Способ извлечения циркония из кислых водных растворов

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных...
Тип: Изобретение
Номер охранного документа: 0002623978
Дата охранного документа: 29.06.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
+ добавить свой РИД