×
09.06.2018
218.016.5e01

Результат интеллектуальной деятельности: Способ получения композита диоксид молибдена/углерод

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического молибдена в пероксиде водорода с последующим добавлением углеродсодержащего агента, сушку и отжиг в инертной атмосфере. В качестве углеродсодержащего агента используют винную кислоту, вводимую в молярном соотношении молибден:винная кислота = 1:0,75÷ 2. Отжиг ведут при температуре 490-550°С в течение 1-2 часов. Обеспечивается простой и технологичный способ получения композита диоксид молибдена/углерод МоO/C, позволяющий значительно сократить длительность процесса. 3 ил., 3 пр.

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO2/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока.

Известен способ получения композита диоксид молибдена/углерод MoO2/C, включающий четыре стадии. На первой стадии получают оксид графена обработкой природного графита окислителем (перманганатом калия KMnO4 или хлоратом калия KClO3) в 98%-ном растворе серной кислоты H2SO4 в присутствии нитрата натрия NaNO3 при 20-120оС в течение 1–5 ч с последующей фильтрацией, промывкой и сушкой продукта при 50оС в течение 36 ч. На второй стадии проводят гомогенизацию графитсодержащей водной суспензии с помощью ультразвукового воздействия мощностью 500 Вт в течение 2–7 ч. На третьей стадии к полученной суспензии при интенсивном перемешивании сначала добавляют 12-фосформолибденовую кислоту H2PMo12O40, а затем один из предложенных восстановителей (гидразин гидрат N2H4⋅H2O, борогидрат натрия NaBH4 или аскорбиновую кислоту C6H8O6). Перемешивание проводят с использованием ультразвука в течение 30 мин мощностью 500 Вт, а затем механически со скоростью 800 об/мин. На четвертой стадии реакционную массу отжигают при температуре 400–800оС в течение 2–8 ч. По данным рентгенофазового анализа (РФА) полученный композит MoO2/C индексируется как смесь двух кристаллических структур диоксида молибдена: моноклинной (JCPDS 65-5787) и гексагональной модификации (JCPDS 50-0739) (Патент CN 104347877, МПК B82Y 30/00, H01G 11/36, H01M 4/583, 2015 год).

Недостатком известного способа является сложность, многостадийность и длительность процесса, обусловленная необходимостью предварительной активации графита с использованием ультразвукового оборудования, а также использование в качестве компонентов реакционной смеси сильно ядовитых гидразина гидрата N2H4⋅H2O и борогидрата натрия NaBH4, имеющих I класс опасности. Кроме того, гидразин гидрат является взрывоопасным соединением. Использование в качестве источника молибдена фосформолибденовой кислоты не позволяет получить композит MoO2/C на основе только одной кристаллографической модификации диоксида молибдена.

Известен способ получения композита диоксид молибдена/углерод MoO2/C путем разложения органо-неорганического прекурсора. В известном способе к водному раствору, содержащему анилин C6H5NH2 и парамолибдат аммония (NH4)6Mo7O24⋅4H2O, при перемешивании добавляют по каплям 1М раствор соляной кислоты HCl до установления рН раствора равного 4-5. Реакцию ведут в масляной бане при температуре 50оС в течение 5–10 ч с последующей промывкой этанолом и сушкой на воздухе в течение 1 дня образовавшегося осадка. В результате образуется органо-неорганический прекурсор белого цвета состава Mo3O10(C6H8N)2⋅2H2O. Затем продукт подвергают нагреву в атмосфере аргона при температуре 500оС в течение 5 ч. Согласно РФА полученный композит индексируется как диоксида молибдена моноклинной сингонии (JCPDS 65-1273). По данным сканирующей электронной микроскопии (СЭМ) композит MoO2/C образован частицами с морфологией нанопроволоки длиной несколько мкм и шириной 80–120 нм (Q. Gao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu, Y. Tang, Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires // J. Mater. Chem. 2010. V. 20. P. 2807–2812).

Недостатком известного способа является использование ядовитого и пожароопасного анилина, оказывающего негативное воздействие на центральную нервную и кровеносную систему и относящегося ко второму классу опасности. Предельно допустимая концентрация анилина в воздухе рабочей зоны составляет 0.3 мг/м3.

Известен способ получения композита диоксид молибдена/углерод MoO2/C, включающий растворение в воде при перемешивании парамолибдата аммония (NH4)6Mo7O24⋅4H2O и аскорбиновой кислоты C6H8O6. Затем помещают реакционную смесь в автоклав и осуществляют гидротермальную обработку при температуре 180оС в течение 6–48 часов. После чего продукт промывают водой, этанолом и сушат при 80оС. Согласно СЭМ полученный композит образован частицами размером 15-25 нм (B. Liu, X. Zhao, Y. Tian, D. Zhao, C. Hu, M. Cao. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high performance lithium-ion batteries // Phys. Chem. Chem. Phys. 2013. V. 5. P. 8831-8837).

Недостатком известного способа является длительность процесса (до 48 ч), а также его сложность, обусловленная использованием автоклавного оборудования.

Известен способ получения композита диоксид молибдена/углерод MoO2/C с использованием этиленгликоля C2H4(OH)2 как источника углерода. В известном способе порошок молибдена растворяют в 15%-ном растворе пероксида водорода Н2О2. Затем к раствору пероксомолибдата добавляют этиленгликоль. Полученную реакционную массу подвергают двухступенчатому нагреву. Первоначально - гидротермально в автоклаве при температуре 200оС в течение 24 ч, а затем отжиг ведут при 500оС в течение 5 ч в атмосфере азота. Согласно СЭМ полученный композит образован слабоагломерированными частицами размером 10 нм (L. Zhou, H.B. Wu, Z. Wang, X.W.(D.) Lou. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries // ACS Appl. Mater. Interfaces 2011. V. 3. P. 4853–4857).

Недостатком известного способа является использование ядовитого и горючего этиленгликоля, относящегося к третьему классу опасности, а также длительность процесса (до 29 ч) и его сложность, обусловленная использованием автоклавного оборудования.

Наиболее близким к предлагаемому способу является способ получения композита диоксид молибдена/углерод MoO2/C, в котором порошок молибдена Мо растворяют при охлаждении в 30%-ном растворе пероксида водорода Н2О2. Полученный реакционный раствор разбавляют до концентрации 0.1 М, а затем загружают в автоклав и выдерживают в гидротермальных условиях при температуре 180оС в течение 24 ч. Полученный осадок фильтруют, промывая водой. На второй стадии с помощью ультразвука α-MoO3 диспергируют в воде, затем добавляют глюкозу C6H12O6 и этанол C2H5OH. Полученную реакционную массу загружают в автоклав, выдерживают при температуре 180оС в течение 15 ч, затем фильтруют, промывают, сушат в вакууме при 70оС. Конечный продукт отжигают в атмосфере аргона при температуре 600оС в течение 5 ч. По данным рентгенофазового анализа состав полученного продукта индексируется как MoO2 моноклинной сингонии (JCPDS 65-1273). Согласно просвечивающей (ПЭМ) и сканирующей электронной микроскопии (СЭМ) частицы MoO2/C имеют морфологию наноремней шириной ~300 нм (L. Yang, L. Liu, Y. Zhu, X. Wang, Y. Wu. Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries // J. Mater. Chem. 2012. V. 22. P. 13148–13152) (прототип).

Недостатками известного способа являются многостадийность, а также длительность процесса (до 44 ч) и его сложность, обусловленная использованием автоклавного оборудования.

Таким образом, перед авторами стояла задача разработать более простой и технологичный способ получения композита диоксид молибдена/углерод, позволяющий также сократить длительность процесса.

Поставленная задача решена в предлагаемом способе получения композита диоксид молибдена/углерод состава MoO2/C, включающем растворение порошка металлического молибдена в пероксиде водорода с последующим добавлением углеродсодержащего агента, сушку и отжиг в инертной атмосфере, в котором в качестве углеродсодержащего агента используют винную кислоту, вводимую в молярном соотношении молибден:винная кислота = 1:0.75÷2, а отжиг ведут при температуре 490-550оС в течение 1-2 часов.

В настоящее время из патентной и научно-технической литературы не известен способ получения композита диоксид молибдена/углерод MoO2/C с использованием в качестве углеродсодержащего реагента винной кислоты в предлагаемых авторами условиях.

Исследования, проведенные авторами, позволили сделать вывод, что композит диоксид молибдена/углерод MoO2/C может быть получен простым и технологичным способом при условии использования винной кислоты C4H6O6, являющейся источником углерода. Видимо, это объясняется тем, что винная кислота, относящаяся к оксикарбоновым кислотам, отличается наличием не только двух карбоксильных групп (О=С-ОН), свойственных для всех карбоновых кислот, но и двух гидроксильных групп (С-ОН), свойственных для спиртов. Это позволяет указанному реагенту проявлять свойства, характерные как для кислот (диссоциация), так и для спиртов, участвуя в окислительно-восстановительных реакциях. При этом, как показали экспериментальные исследования, происходит мягкое восстановление ионов молибдена(VI) до молибдена(IV). Кроме того, проведение синтеза в условиях жидкофазного взаимодействия химических ингредиентов обеспечивает равномерное формирование оксидной и углеродной составляющих композита.

Исследования, проведенные авторами, позволили установить, что для получения композита состава MoO2/C в случае использования углеродной компоненты в твердом состоянии (в виде графена, мезопористого углерода, графина или какой-либо другой аллотропной модификации углерода) невозможно достичь равномерного распределения углерода на поверхности частиц диоксида молибдена. Использование авторами в качестве реакционной смеси водного раствора винной кислоты C4H6O6, как источника углерода, и полученного при взаимодействии пероксида водорода и металлического молибдена раствора пероксомолибденовой кислоты H2MoO5, как источника молибдена, позволяет осуществлять жидкофазный синтез, и вводить углерод в состав композита in situ. Кроме того, проведение реакции взаимодействия между пероксомолибденовой кислотой H2MoO5 и винной кислотой C4H6O6 в растворе дополнительно способствует гомогенизации конечного продукта. Формирование кристаллической структуры композита MoO2/C завершается термолизом реакционной массы в инертной атмосфере. Такой подход к осуществлению процесса получения композита MoO2/C обеспечивает простоту и технологичность его выполнения, а также надежность равномерного распределения углеродной составляющей композита. Гомогенное диспергирование углерода в композите предотвращает агрегацию частиц конечного продукта, увеличивает проводимость системы, что в конечном итоге повышает стабильность работы различных устройств, изготовленных на основе композита диоксид молибдена/углерод как материала.

Авторами экспериментальным путем было установлено, что существенным фактором, определяющим состав и структуру конечного продукта является использование молибдена и винной кислоты в молярном соотношении молибден:винная кислота = 1:0.75÷2. При уменьшении молярного соотношения исходных компонентов реакционной массы (содержание винной кислоты по отношению к молибдену меньше, чем 0.75) в продуктах реакции наблюдается в качестве примеси триоксид молибдена MoO3. При увеличении молярного соотношения исходных компонентов реакционной массы (содержание винной кислоты по отношению к молибдену больше чем 2) дополнительно с основной фазой MoO2/C образуются оксиды молибдена с переменной валентностью, так называемые фазы Магнели, общей формулы MonO2n-1. Также при снижении температуры термолиза менее 490оС или при повышении ее выше 550оС в конечном продукте появляются примесные фазы оксидов молибдена. Кроме того, при повышении температуры термолиза наблюдается агломерация частиц и уменьшение содержания углерода в композите MoO2/C.

На фиг. 1 представлена экспериментальная рентгенограмма композита диоксид молибдена/углерод MoO2/C и позиции дифракционных линий на теоретической дифрактограмме диоксида молибдена MoO2.

На фиг. 2 приведено изображение композита диоксид молибдена/углерод MoO2/C с шарообразной морфологией частиц, полученное на просвечивающем электронном микроскопе (ПЭМ) высокого разрешения.

На фиг. 3 представлен КР-спектр композита диоксид молибдена/углерод MoO2/C.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок молибдена Mo и растворяют его в 30%-ном пероксиде водорода H2O2 до получения прозрачного раствора желтого цвета. К полученному раствору при перемешивании добавляют порошок винной кислоты C4H6O6, взятой в молярном соотношении молибден:винная кислота = 1:0.75÷2. Перемешивание ведут до полного растворения винной кислоты. Полученный раствор синего цвета сушат на воздухе при температуре 50-60оС в течение 1-4 ч. Затем гомогенную смесь отжигают в токе инертного газа (азота или аргона) при температуре 490-550оС в течение 1-2 ч. Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА), просвечивающей электронной микроскопии (ПЭМ) и КР-спектроскопии. Содержание углерода в композите определяли термогравиметрическим методом. По данным РФА полученный порошок является композитом диоксид молибдена/углерод MoO2/C на основе моноклинной структуры диоксида молибдена MoO2 с параметрами элементарной ячейки a = 5.606 Å, b = 4.859 Å, c = 5.537 Å и β = 119.37о (фиг. 1). Согласно ПЭМ частицы MoO2/C имеют морфологию шаров диаметром 15-20 нм (фиг. 2). Наличие свободного углерода в композите диоксид молибдена/углерод MoO2/C подтверждается КР-спектроскопией (фиг. 3). На КР-спектре наблюдается G–полоса (graphitic) с частотой 1584 см-1, характеризующая колебания графитоподобной системы sp2–углеродных связей, и D-полоса (disordered) с частотой 1383 см-1, описывающая разупорядоченный углерод в sp3–состоянии. По данным химического анализа концентрация углерода в композите MoO2/C равна 7.4 вес.%.

Пример 1. Берут 1,0 г порошка молибдена Mo и растворяют его в 25 мл 30%-ного раствора пероксида водорода H2O2. К полученному раствору добавляют 1.5645 г винной кислоты C4H6O6 (молярное соотношение молибден:винная кислота = 1 : 1). Полученный раствор сушат на воздухе при температуре 60оС в течение 2 ч. Затем гомогенную смесь помещают печь, нагревают в токе азота до 490оС и выдерживают 2 ч. По данным РФА, ПЭМ, КР-спектроскопии и термогравиметрического анализа полученный продукт является композитом МоO2/C на основе моноклинной сингонии диоксида молибдена с концентрацией углерода, равной 7.4 вес.%, состоящим из частиц с морфологией шаров диаметром 15-20 нм.

Пример 2. Берут 1,0 г порошка молибдена Mo и растворяют его в 20 мл 30%-ного раствора пероксида водорода H2O2. К полученному раствору добавляют 1.1734 г винной кислоты C4H6O6 (молярное соотношение молибден:винная кислота = 1:0.75). Полученный раствор сушат на воздухе при температуре 60оС в течение 2 ч. Затем гомогенную смесь помещают печь, нагревают в токе азота до 550оС и выдерживают 1 ч. По данным РФА, ПЭМ, КР-спектроскопии и термогравиметрического анализа полученный продукт является композитом МоO2/C на основе моноклинной сингонии диоксида молибдена с концентрацией углерода, равной 7.4 вес.%, состоящим из частиц с морфологией шаров диаметром 15-20 нм.

Пример 3. Берут 1,0 г порошка молибдена Mo и растворяют его в 15 мл 30%-ного раствора пероксида водорода H2O2. К полученному раствору добавляют 3.1290 г винной кислоты C4H6O6 (молярное соотношение молибден:винная кислота = 1:2). Полученный раствор сушат на воздухе при температуре 60оС в течение 2 ч. Затем гомогенную смесь помещают печь, нагревают в токе азота до 500оС и выдерживают 1 ч. По данным РФА, ПЭМ, КР-спектроскопии и термогравиметрического анализа полученный продукт является композитом МоO2/C на основе моноклинной сингонии диоксида молибдена с концентрацией углерода, равной 7.4 вес.%, состоящим из частиц с морфологией шаров диаметром 15-20 нм.

Таким образом, авторами предлагается простой и технологичный способ получения композита диоксид молибдена/углерод МоO2/C, позволяющий значительно сократить его длительность.

Способ получения композита диоксид молибдена/углерод, включающий растворение порошка металлического молибдена в пероксиде водорода с последующим добавлением углеродсодержащего агента, сушку и отжиг в инертной атмосфере, отличающийся тем, что в качестве углеродсодержащего агента используют винную кислоту, вводимую в молярном соотношении молибден:винная кислота = 1:0,75÷2, а отжиг ведут при температуре 490-550С в течение 1-2 часов.
Способ получения композита диоксид молибдена/углерод
Способ получения композита диоксид молибдена/углерод
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 17.
10.08.2013
№216.012.5cb2

Способ получения наночастиц карбида молибдена

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002489351
Дата охранного документа: 10.08.2013
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8757

Способ получения наностержней диоксида гафния

Изобретение относится к способам получения наноразмерных материалов, а именно к способу получения диоксида гафния с морфологией наностержней, который используется в полупроводниковой индустрии как материал, обладающий большой диэлектрической проницаемости, в качестве каталитической подложки и...
Тип: Изобретение
Номер охранного документа: 0002603788
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8977

Способ получения композита диоксид титана/углерод

Изобретение может быть использовано в производстве эффективных электродных материалов в химических источниках тока, сорбентов. Для получения композита диоксид титана/углерод TiO/C проводят термическое разложение титансодержащего прекурсора в инертной атмосфере. В качестве титансодержащего...
Тип: Изобретение
Номер охранного документа: 0002602536
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
+ добавить свой РИД