×
08.02.2020
220.018.0040

Способ получения наносфер оксида железа (III)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002713594
Дата охранного документа
05.02.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения наночастиц оксида железа (III) α-FeO, который может быть использован в качестве пигмента, катализатора, сенсибилизатора солнечных батарей, эффективного анодного материала химических источников тока, газочувствительного сенсора для определения паров этанола CHOH, монооксида углерода CO, водорода H, композитного адсорбционного материала для очистки сточных вод от водорастворимых красителей. Cпособ получения наночастиц оксида железа (III) α-FeO включает микроволновое облучение при нагревании водного раствора гексагидрата хлорида железа FeCl⋅6HO и соединения, содержащего аммоний-ион, промывание и сушку, при этом в качестве соединения, содержащего аммоний-ион, используют дигидроортофосфат аммония NHHPO и дополнительно сульфат натрия NaSO при молярном соотношении компонентов, равном FeCl⋅6HO:NHHPO:NaSO=40:0,25:1, в водном растворе при соотношении т:ж=0,5491: 90 ÷ 110, а микроволновое облучение осуществляют при температуре 200-220°С в течение 5-20 мин с мощностью 17-19 Вт под давлением 10-20 бар при постоянном перемешивании со скоростью 100-300 об/мин. Изобретение обеспечивает получение частиц оксида железа (III) ромбоэдрической сингонии, имеющих сферическую форму диаметром 80 нм простым и технологичным способом. 2 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения наночастиц, в частности оксида железа (III) α-Fe2O3, который может быть использован в качестве пигмента (Prim S.R., Folgueras, M.V., de Lima M.A., Hotza D. Synthesis and characterization of hematite pigment obtained from a steel waste industry // J. Hazardous Mater. 2011. V. 192. P. 1307–1313), катализатора (Wagloehner S., Kureti S. Study on the mechanism of the oxidation of soot on Fe2O3 catalyst // Applied Catalysis B: Environmental 2012. V. 125. P. 158–165), сенсибилизатора солнечных батарей (Shahpari M., Behjat A., Khajaminian M., Torabi N. The influence of morphology of hematite (α-Fe2O3) counter electrodes on the efficiency of dye-sensitized solar cells // Solar Energy 2015. V. 119. P. 45–53), эффективного анодного материала химических источников тока (Lu J.F., Tsai Y.Y., J. Tsai C. Shape dependence of the electrochemical properties of α-Fe2O3 particles as anode materials for lithium ion batteries // RSC Adv. 2016. V. 6. P. 26929–26935), газочувствительного сенсора для определения паров этанола C2H5OH, монооксида углерода CO, водорода H2 (Donarelli M., Milana R., Rigonia F. et al. Anomalous gas sensing behaviors to reducing agents of hydrothermally grown α-Fe2O3 nanorods // Sensors Actuators: B. Chem. 2018. V. 273. P. 1237–1245), композитного адсорбционного материала для очистки сточных вод от водорастворимых красителей (Wang W., Jiao T., Zhang Q. et al. Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment // RSC Adv. 2015. V. 5. P. 56279–56285).

Известен способ получения оксида железа (III) α-Fe2O3 с морфологией наносфер, включающий две стадии. На первой стадии к водному раствору хлорида калия KCl концентрацией 0.8 - 1.2 М и сульфата железа FeSO4 концентрацией 0.4 - 0.6 М добавляют кокамид диэтаноламина концентрацией 0.2 - 0.3 М до установления рН реакционной массы равной 10. Затем полученную смесь подвергают автоклавной обработке в реакторе при температуре 120 - 150°С в течение 10 - 14 ч. На второй стадии процесса полученный продукт отжигают в атмосфере кислорода при температуре 300 - 400°С в течение 4 - 6 ч. Указанный способ позволяет получать α-Fe2O3 с морфологий наносфер диаметром 50 нм (Патент CN 108423714; МПК B82Y30/00, B82Y40/00, C01G49/06, H01M10/0525, H01M4/52; 2018 г.).

Недостатком известного способа является сложность, обусловленная многостадийностью и длительностью процесса. Кроме того, кокамид диэтаноламина является токсичным соединением, разлагающимся с образованием канцерогенного нитрозамина.

Известен способ получения оксида железа (III) α-Fe2O3, включающий две стадии термообработки. В известном способе 0.01 - 0.4 М мочевины (NH2)2CO и 0.01 - 0.2 М гексагидрата нитрата железа Fe(NO3)3·6H2O растворяют при перемешивании в смеси ионной жидкости и воды, взятых в объемном соотношении 0.01 - 0.2. Полученную реакционную массу подвергают гидротермально-микроволновой обработке при температуре 120 - 220°С в течение 5 - 60 мин с последующим отделением центрифугированием, промывкой и сушкой продукта на воздухе при 20 – 100оС. Затем, полученный продукт отжигают на воздухе не менее 1 ч при 200 - 600оС. Согласно данным сканирующей электронной микроскопии, полученный α-Fe2O3 образован частицами с морфологией микросфер диаметром 0.5 - 1 µм (Патент CN 101475222; МПК C01G49/06, Y02P20/542; 2009 г.).

Недостатком известного способа является длительность и сложность процесса вследствие проведения термообработки в два этапа. Кроме того, известный способ не позволяет получать частицы α-Fe2O3 наноразмерного диапазона.

Известен способ получения оксида железа (III) α-Fe2O3, включающий растворение 0.003 - 0.011 M гексацианоферрата (III) калия K3[Fe(CN)6] и 0.01 - 0.25 M бензойной кислоты C6H5COOH в 60 - 80 мл воды с последующим добавлением гидроксида натрия NaOH до установления рН реакционной смеси 6 - 8. Затем реакционный раствор подвергают гидротермально-микроволновой обработке при температуре 180 - 220°С в течение 0.5 - 2 ч. Полученный осадок отделяют, промывают и сушат. В результате получают оксид железа (III) α-Fe2O3 c морфологией частиц подобной цветам размером до 5 µм (Патент CN 108328660; МПК C01G49/06, C01G49/06; 2018 г.).

Недостатком известного способа является то, что он не позволяет получать оксид железа (III) со сферической морфологией, частицы которого находятся в наноразмерным диапазоне.

Известен способ получения полых микросфер с использованием микроволновой обработки, который включает получение исходной смеси гексагидрата хлорида железа, мочевины и этиленгликоля, перемешивание смеси с помощью магнитной мешалки до полного растворения гексагидрата хлорида железа и мочевины, микроволновую обработку, центрифугирование и отмывание полученного осадка в этиловом спирте и дистиллированной воде, вакуумную сушку и отжиг при 300оС в течение 1 часа с последующим охлаждением до комнатной температуры (заявка WO2018187925; МПК C01G 49/06; 2018 г.).

Недостатками известного способа являются необходимость дополнительного отжига продукта; использование в качестве поверхностно-активного вещества этиленгликоля, относящегося к 3 классу опасности; невозможность получения сфер наноразмерного диапазона (размер получаемых сфер ⁓ 3 µм).

Наиболее близким к предлагаемому способу является способ получения оксида железа (III) α-Fe2O3, включающий растворение под действием ультразвука гексагидрата хлорида железа (III) FeCl3·6H2O и мочевины CO(NH2)2, взятых в молярном соотношении 1 : 1 ÷ 1.5, в водном растворе глицерина при соотношении глицерин : вода = 1 : 2 ÷ 9. Затем реакционный раствор подвергают микроволновой обработке при температуре 120 - 150°С в течение 20 - 50 мин. Полученный осадок отделяют центрифугированием, промывают этанолом, водой и сушат при 80°С в течение 5 ч. Согласно данным сканирующей электронной микроскопии, полученный α-Fe2O3 образован частицами сферической морфологии диаметром 300 - 500 нм (Патент CN 103073065; МПК B82Y30/00, C01G49/06, C01G49/06; 2014 г.). (прототип).

Недостатками известного способа являются: невозможность получения оксида железа (III), размер частиц которого имеет наноразмерный диапазон (меньше 100 нм), поскольку использование мочевины для создания требуемого рН раствора не препятствует агломерации получаемых частиц; сложность процесса, обусловленная необходимостью использования ультразвука для перемешивания реакционной смеси, содержащей вязкий глицерин.

Таким образом, перед авторами стояла задача разработать простой технологически способ получения оксида железа (III) α-Fe2O3 с морфологией наносфер.

Поставленная задача решена в предлагаемом способе получения наночастиц оксида железа (III) α-Fe2O3, включающем микроволновое облучение при нагревании водного раствора гексагидрата хлорида железа FeCl3·6H2O и соединения, содержащего аммоний-ион, промывание и сушку, в котором в качестве соединения, содержащего аммоний-ион, используют дигидроортофосфат аммония NH4H2PO4, и водный раствор дополнительно содержит сульфат натрия Na2SO4 при молярном соотношении компонентов, равном FeCl3·6H2O : NH4H2PO4 : Na2SO4 = 40 : 0.25 : 1 в водном растворе при соотношении т : ж = 0.5491 : 90 ÷ 110, а микроволновое облучение осуществляют при температуре 200 – 220оС в течение 5 - 20 мин с мощностью 17 - 19 Вт под давлением 10 - 20 бар при постоянном перемешивании со скоростью 100 - 300 об/мин.

В настоящее время из патентной и научно-технической литературы не известен способ получения оксида железа (III) α-Fe2O3 с морфологией наночастиц подобной сферам в предлагаемых авторами условиях осуществления микроволнового облучения с использованием дигидроортофосфат аммония NH4H2PO4 и сульфата натрия в качестве исходных реагентов.

Исследования, проведенные авторами, позволили сделать вывод, что оксид железа (III) α-Fe2O3 с морфологией наночастиц подобной сферам может быть получен простым и технологичным способом при условии использования сульфата натрия Na2SO4 и дигидроортофосфата аммония NH4H2PO4, являющихся одновременно и реагентами, используемыми для создания требуемой кислотности (рН) раствора, и обеспечивающими формирование в процессе гидротермально-микроволновой обработки рабочего раствора оксида железа (III). При растворении в воде гексагидрат хлорид железа FeCl3·6H2O подвергается гидролизу с образованием промежуточного соединения метагидроксида железа α-FeOOH согласно реакции (1):

FeCl3 + 2H2O → FeOOH + 3HCl. (1)

При термообработке в гидротермально-микроволновых условиях метагидроксид железа разлагается с образованием оксида железа (III) согласно реакции (2):

2FeOOH → Fe2O3 + H2O. (2)

Дополнительно ионы SO42- и H2PO4- выполняют роль лигандов для ионов Fe3+, адсорбируясь на поверхности α-FeOOH, с образованием монодентантых структур (Fe-O-SO3) и (Fe-O-H2PO3), препятствующих агломерации образующихся кластеров Fe2O3 и способствующих их формированию в наночастицы сферической морфологии.

Авторами экспериментальным путем было установлено, что существенным фактором, определяющим структуру и морфологию конечного продукта является использование дигидроортофосфата аммония NH4H2PO4 для создания требуемой кислотности (рН) рабочего раствора путем гидролиза этого соединения, являющегося мягким гидролизующимся реагентом за счет протекания гидролиза как по катиону, так и по аниону, а именно:

NH4H2PO4 + H2O → NH4OH + H3PO4. (3)

При этом устанавливается рН рабочего раствора, равная ~7. Кроме того, существенным фактором, определяющим структуру конечного продукта, является соблюдение заявляемых параметров процесса. Так, при уменьшении содержания воды к суммарному содержанию компонентов реакционной смеси ниже 90 мл в конечном продукте наблюдается появление сильно агломерированных наночастиц. При повышении содержания воды к суммарному содержанию компонентов реакционной смеси выше 110 мл в конечном продукте появляются частицы оксида железа (III) произвольной морфологии. При уменьшении температуры гидротермально-микроволнового синтеза ниже 200°С, мощности менее 17 Вт, давлении ниже 10 бар и скорости перемешивания менее 100 об/мин в конечном продукте образуются частицы оксида железа (III) в форме чешуек. Повышение температуры синтеза выше 220°С, мощности более 19 Вт, давлении выше 20 бар и скорости перемешивания более 300 об/мин приводит к сильной агломерации образующихся наносфер.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок гексахлорида железа FeCl3·6H2O, порошок дигидроортофосфата аммония NH4H2PO4, порошок сульфата натрия Na2SO4 в молярном соотношении FeCl3·6H2O : NH4H2PO4 : Na2SO4 = 40 : 0.25 : 1 и растворяют при перемешивании в дистиллированной воде при соотношении т : ж = 0.5491 : 90 ÷ 110. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr) мощностью 17 - 19 Вт, нагревают до 200 - 220°С и выдерживают при этой температуре и давлении 10 - 20 бар в течение 5 - 20 мин при постоянном перемешивании со скоростью 100 - 300 об/мин. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА) и сканирующей электронной микроскопии (СЭМ). По данным РФА полученный порошок коричневого цвета является оксидом железа (III) α-Fe2O3 ромбоэдрической сингонии (пр. гр. R-3c) с параметрами элементарной ячейки a = 5,035 Å, c = 13,75 Å. Согласно сканирующей электронной микроскопии частицы оксида железа (III) имеют морфологию наносфер диаметром ~ 80 нм.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 0.5406 г порошка гексахлорида железа FeCl3·6H2O, 0.0014 г дигидроортофосфата аммония NH4H2PO4, 0.0071 г сульфата натрия Na2SO4 и растворяют его в 90 мл дистиллированной воды, что соответствует молярному соотношению 40 : 0.25 : 1 при соотношении т : ж = 0.5491 : 90. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr) мощностью 17 Вт, нагревают до 220оС и выдерживают при этой температуре и давлении 10 бар в течение 5 мин при постоянном перемешивании со скоростью 100 об/мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50оС. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав α-Fe2O3 ромбоэдрической сингонии с параметрами элементарной ячейки a = 5,035 Å, c = 13,75 Å и состоит из наносфер диаметром ~ 80 нм.

На фиг.1 представлена рентгенограмма α-Fe2O3.

На фиг. 2 приведено изображение наносфер оксида железа (III), полученное на сканирующем электронном микроскопе высокого разрешения.

Пример 2. Берут 0.5406 г порошка гексахлорида железа FeCl3·6H2O, 0.0014 г дигидроортофосфата аммония NH4H2PO4, 0.0071 г сульфата натрия Na2SO4 и растворяют его в 110 мл дистиллированной воды, что соответствует молярному соотношению 40 : 0.25 : 1 при соотношении т : ж = 0.5491 : 110. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr) мощностью 19 Вт, нагревают до 200оС и выдерживают при этой температуре и давлении 20 бар в течение 20 мин при постоянном перемешивании со скоростью 300 об/мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50оС. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав α-Fe2O3 ромбоэдрической сингонии с параметрами элементарной ячейки a = 5,035 Å, c = 13,75 Å. и состоит из наносфер диаметром ~ 80 нм.

Пример 3. Берут 0.5406 г порошка гексахлорида железа FeCl3·6H2O, 0.0014 г дигидроортофосфата аммония NH4H2PO4, 0.0071 г сульфата натрия Na2SO4 и растворяют его в 100 мл дистиллированной воды, что соответствует молярному соотношению 40 : 0.25 : 1 при соотношении т : ж = 0.5491 : 100. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr) мощностью 18 Вт, нагревают до 200оС и выдерживают при этой температуре и давлении 15 бар в течение 10 мин при постоянном перемешивании со скоростью 200 об/мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50оС. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав α-Fe2O3 ромбоэдрической сингонии с параметрами элементарной ячейки a = 5,035 Å, c = 13,75 Å. и состоит из наносфер диаметром ~ 80 нм.

Таким образом, авторами предлагается простой и технологичный способ получения порошка оксида железа (III) ромбоэдрической сингонии с частицами размером ⁓ 80 нм сферической формы.

Способ получения наночастиц оксида железа (III) α-FeO, включающий микроволновое облучение при нагревании водного раствора гексагидрата хлорида железа FeCl·6HO и соединения, содержащего аммоний-ион, промывание и сушку, отличающийся тем, что в качестве соединения, содержащего аммоний-ион, используют дигидроортофосфат аммония NHHPO и дополнительно сульфат натрия NaSO при молярном соотношении компонентов, равном FeCl⋅6HO:NHHPO:NaSO=40:0,25:1, в водном растворе при соотношении т:ж=0,5491:90÷110, а микроволновое облучение осуществляют при температуре 200-220°С в течение 5-20 мин с мощностью 17-19 Вт под давлением 10-20 бар при постоянном перемешивании со скоростью 100-300 об/мин.
Способ получения наносфер оксида железа (III)
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 17.
10.08.2013
№216.012.5cb2

Способ получения наночастиц карбида молибдена

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002489351
Дата охранного документа: 10.08.2013
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8757

Способ получения наностержней диоксида гафния

Изобретение относится к способам получения наноразмерных материалов, а именно к способу получения диоксида гафния с морфологией наностержней, который используется в полупроводниковой индустрии как материал, обладающий большой диэлектрической проницаемости, в качестве каталитической подложки и...
Тип: Изобретение
Номер охранного документа: 0002603788
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8977

Способ получения композита диоксид титана/углерод

Изобретение может быть использовано в производстве эффективных электродных материалов в химических источниках тока, сорбентов. Для получения композита диоксид титана/углерод TiO/C проводят термическое разложение титансодержащего прекурсора в инертной атмосфере. В качестве титансодержащего...
Тип: Изобретение
Номер охранного документа: 0002602536
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
+ добавить свой РИД