×
01.07.2018
218.016.697d

Результат интеллектуальной деятельности: Способ получения серебросодержащей ткани растительного происхождения

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH, с последующими отделением ткани, промывкой и сушкой, причем водный раствор готовят путем добавления в 0.05-0.1 М водный раствор нитрата серебра в качестве восстановителя сульфат ванадила гидрат, взятый в эквимолярном количестве по отношению к нитрату серебра, и в качестве соединения, содержащего группу NH, 10-45 мл 25%-ного раствора гидроксида аммония до рН 7.0-10.0, а обработку ткани, взятой в массовом количестве 2:1 по отношению к нитрату серебра, осуществляют при комнатной температуре в течение 1-10 мин. Способ получения серебросодержащей ткани растительного происхождения обеспечивает снижение температуры процесса и сокращение длительности процесса, а также увеличение закрепления частиц серебра на поверхности ткани после промывки. 2 ил., 9 пр.

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Известно, что частицы серебра обладают широким спектром бактерицидного, противовирусного, противогрибкового и антисептического действия в отношении патогенных микроорганизмов, дрожжевых грибов и вирусов, а также низкой токсичностью и отсутствием аллергенных свойств (Баллюзек Ф.В., Куркуев А.С., Сквирский В.Я. Лечебное серебро и медицинские нанотехнологии // СПб: Диля. 2008.112 с.; Landsdown A.B. Silver in healthcare: Its antimicrobial efficacy and safety in use // Cambridge: Royal Society of Chemistry, 2010. 217 p.). Использование импрегнирования тканей наночастицами серебра позволяет получать текстильные материалы, обладающие антимикробными свойствами и защищающие объекты, соприкасающиеся с текстильными материалами, от действия патогенной микрофлоры и микроорганизмов (Ю.А. Букина, Е.А. Сергеева Современные материалы для производства спортивной одежды и термобелья // Вестник Казанского технологического университета. 2013. №9. с. 112-114). Придание текстильным материалам и изделиям антимикробных и лечебных свойств можно рассматривать как важное мероприятие по профилактике и лечению инфекционных и кожно-аллергических заболеваний (Савадян Э.Ш. Исследование препаратов серебра в хирургии и травматологии // Хирургия. 1989. № 8. С. 135-139). Серебросодержащие ткани находят применение в производстве бактерицидных перевязочных средств, медицинской и спортивной одежды, нижнего и постельного белья, чулочно-носочных изделий, предметов гигиены.

Известен способ получения антибактериального текстильного волокнистого материала, включающий несколько стадий. На первой стадии проводят обработку волокнистого материала в нагретом до 70-90°С водном растворе дубильных веществ на основе таннина с концентрацией 0.2-2.0 мас.% с последующим охлаждением, отделением водной фазы центрифугированием и сушкой волокнистого материала. На второй стадии проводят закрепление дубильного вещества путем пропитки волокнистого материала в растворе антимонилтартрата калия (K(SbO)C4H4O6) с концентрацией 0.5-1.5 мас.% в течение 10-40 мин при комнатной температуре с последующим отделением водной фазы и промывкой в воде. На третьей стадии влажный волокнистый материал помещают в нагретый до 50-100°С водный раствор нитрата серебра с концентрацией 0.1-3.0 мас.% в течение 3-60 мин с последующим центрифугированием и сушкой при 25-50°С. Концентрация осажденного серебра на ткани составляла 0.25-1.0 мас.% (патент RU 2337716, МПК A61L 15/18, 2007 г.).

Недостатком известного способа является сложность, обусловленная многостадийностью и длительностью процесса, поскольку существует необходимость предварительной подготовки исходного текстильного материала в водном растворе дубильных веществ с последующим закреплением дубильного вещества путем пропитки волокнистого материала в растворе антимонилтартрата калия. Кроме того, антимонилтартрат калия (K(SbO)C4H4O6) является высокотоксичным химическим соединением.

Известен способ получения антибактериального волокнистого материала с адсорбированными на его поверхности наночастицами серебра. Способ включает обработку волокнистого материала смесью водного раствора нитрата серебра и водного раствора восстановителя, в качестве которого используют глюкозу, или аскорбиновую кислоту (витамин С), или гидразин-гидрат (N2H4·H2O). Затем материал подвергается дегидратации и высушиванию при 120-160°С в течение 40-60 мин (патент US 6979491, МПК D02G 3/00, 2005 г.).

Недостатком известного способа является использование в качестве восстановителя токсичного и взрывоопасного гидразин-гидрата, относящегося к первому классу опасности, а также деструкция пряжи при ее высушивании при повышенных температурах.

Известен способ получения серебросодержащего волокна на основе природного полимера путем пропитки в течение 20-60 мин водным раствором нитрата серебра, в который дополнительно введен борогидрат натрия (NaBH4) при соотношении AgNO3:NaBH4=1:1-1:10. После чего волокно промывается в воде и высушивается на воздухе (патент RU 2402655, МПК D06M 11/01, D06M 11/65, D06/M 101/12, 2009 г.).

Недостатком известного способа является использование борогидрата натрия, который относится к химическим веществам, выделяющим воспламеняющие газы при соприкосновении с водой в результате гидролиза в водных растворах. Кроме того, борогидрат натрия является токсичным соединением, раздражающим слизистую и кожу, характеризуется репродуктивной токсичностью.

Известен способ получения серебросодержащего волокна путем его пропитки водным раствором нитрата серебра и аммиака с последующим добавлением глюкозы С6Н12О6, гидроксида натрия NaOH и азотной кислоты HNO3. При этом пропитанная ткань после дегидратации при температуре 70-80°С обрабатывается в течение 2-4 мин при температуре 130-180°С. В результате на поверхности пряжи образуется слой наноразмерных частиц оксида серебра Ag2O, внутренней частью которых (ядром) является серебро Ag (патент CN 1348032, МПК D02G 3/44, D06M 11/62, D06M 11/83, 2002 г.).

Недостатком известного способа является проведение термообработки пропитанной ткани при повышенных температурах (до 180°С), что приводит к деструкции волокна.

Наиболее близким к предлагаемому техническому решению является способ получения серебросодержащего целлюлозного материала путем его пропитки раствором нитрата серебра и нагревания реакционной смеси при 85-150°С в течение 1-4 ч. Для интенсификации процесса в водный раствор нитрата серебра дополнительно вводят аммиак, глицерин либо смесь аммиака и глицерина. В результате получают материал с содержанием металлического серебра 0.2-17.5% (патент RU 2256675, МПК С08L 1/02, C08K 3/28, C08/B 1/00, 2005 г.).

Недостатком известного способа является длительность процесса (до 4 ч), а также его проведение при повышенных температурах (до 150°С), что приводит к деструкции волокна вследствие уменьшения степени полимеризации и, следовательно, является причиной слабого закрепления частиц серебра на поверхности материала и удаления его при промывке.

Таким образом, перед авторами стояла задача разработать более технологичный способ получения серебросодержащей ткани растительного происхождения, позволяющий снизить температуру, сократить длительность процесса, а также увеличить содержание серебра на поверхности ткани после ее промывки.

Поставленная задача решена в предлагаемом способе получения серебросодержащей ткани растительного происхождения, включающем обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH4+, с последующими отделением ткани, промывкой и сушкой, в котором водный раствор готовят путем добавления в 0.05-0.1 М водный раствор нитрата серебра в качестве восстановителя сульфат ванадила гидрат, взятый в эквимолярном количестве по отношению к нитрату серебра, и в качестве соединения, содержащего группу NH4+, 10-45 мл 25%-ного раствора гидроксида аммония до установления рН, равного 7.0-10.0, а обработку ткани, взятой в массовом количестве 2:1 по отношению к нитрату серебра, осуществляют при комнатной температуре в течение 1-10 мин.

В настоящее время из патентной и научно-технической литературы не известен способ получения антибактериальной серебросодержащей ткани с использованием водного раствора нитрата серебра, дополнительно содержащего сульфат ванадила гидрат при определенном молярном соотношении, с последующим установлением рН среды путем добавления водного раствора гидроксида аммония.

Исследования, проведенные авторами, позволили сделать вывод, что серебросодержащая ткань может быть получена простым и технологичным способом при условии использования в качестве восстановителя сульфат ванадила гидрат VOSO4·3H2O, который в нейтральной и щелочной среде проявляет, как было установлено авторами в ходе проведенных исследований, свойства мягкого восстановителя, а использование гидроксида аммония позволяет создавать щелочность реакционной среды в широком диапазоне рН и обеспечивать одновременно медленное формирование частиц серебра в процессе восстановления из нитрата серебра вследствие образования устойчивого комплекса [Ag(NH3)2]+. В таких условиях происходит формирование наночастиц серебра, содержание которых в ткани можно изменять в широком диапазоне в зависимости от рН среды.

Экспериментальным путем было установлено, что молярная концентрация нитрата серебра в реакционном растворе должна быть равна 0.05-0.1 М. Уменьшение молярной концентрации нитрата серебра в растворе (менее 0.05 М) приводит к увеличению длительности пропитки ткани. Увеличение молярной концентрации нитрата серебра в растворе (более 0.1 М) приводит к загрязнению сливных вод непрореагировавшим нитратом серебра. Существенным фактором, определяющим состав и структуру конечного продукта, является молярное соотношение исходных компонентов раствора и величина щелочности раствора (значение рН), создаваемая гидроксидом аммония. Экспериментальным путем было установлено, что молярное соотношение нитрата серебра и сульфата ванадила гидрата должно быть эквимолярным, то есть равно AgNO3:VOSO4∙3Н2О=1:1, а значение щелочности среды должно быть 7.0≤рН≤ 10.0. Проведение процесса в пределах заявляемого соотношения исходных компонентов позволяет получать ткань, импрегнированную только металлическим серебром за счет получения однофазного продукта в пропитывающем растворе с исключением процессов гидролиза сульфата ванадила гидрата и образования каких-либо примесных фаз. При уменьшении молярного соотношения исходных компонентов (содержание нитрата серебра по отношению к сульфату ванадила гидрата меньше чем 1) дополнительно с основной фазой (металлическим серебром Ag) могут образовываться ванадаты серебра (Ag4V2O7, Ag3VO4). При увеличении молярного соотношения исходных компонентов (содержание нитрата серебра по отношению к сульфату ванадила гидрата больше чем 1) наблюдаются в качестве примесей гексаванадат серебра AgV3O8, гидроксид ванадия(IV) VO(OH)2. При рН<7.0 наблюдается образование многофазного продукта, в котором наряду с основной фазой Ag присутствует NH4VO3 и NH4V3O8. При рН>10.0 согласно диаграмме состояния ионов ванадия в растворе образуются ортованадат-ионы VO43-, приводящие к образованию Ag3VO4, VO(OH)2 и препятствующие формированию основной фазы Ag. Таким образом, только проведение процесса в предлагаемых условиях позволяет получить ткань, импрегнированную частицами металлического серебра гранулометрического состава 20-30 нм, при комнатной температуре в течение 1-10 мин.

Предлагаемый способ может быть осуществлен следующим образом.

Берут порошок нитрата серебра AgNO3 и растворяют его в воде с получением 0.05-0.1 М раствора. К полученному раствору при перемешивании добавляют сульфат ванадила гидрат VOSO4∙3Н2О в эквимолярном количестве по отношению к нитрату серебра и затем 10-45 мл 25%-ного водного раствора гидроксида аммония NH4OH до установления рН раствора 7.0-10.0. В полученный раствор при комнатной температуре помещают ткань растительного происхождения в массовом соотношении AgNO3:ткань=1:2 и выдерживают 1-10 мин при перемешивании. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С.

Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА) и сканирующей электронной микроскопии (СЭМ). Количество серебра, импрегнированного в ткань, определяли масс-спектроскопическим методом после его растворения в азотной кислоте. По данным РФА и СЭМ получена ткань, содержащая наночастицы металлического серебра Ag овальной формы. Размер частиц серебра вычислен по данным рентгеновского анализа с использованием уравнения Шеррера.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Прочность связывания серебра с тканью определяли по отношению концентрации серебра после стирки в растворе СМС к начальной концентрации серебра. В качестве ткани растительного происхождения выбраны хлопчатобумажная и льняная ткань.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 4.2 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.05 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 5.4 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 10 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 7.0. В полученный раствор при комнатной температуре помещают образец хлопчатобумажной ткани массой 8.4 г и выдерживают при перемешивании в течение 10 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань импрегнирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4,0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 2.4 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 2.1 мас.%. Прочность связывания серебра с хлопчатобумажной тканью равна 0.88.

На фиг.1 представлена рентгенограмма серебросодержащей ткани, на фиг. 2 приведено СЭМ-изображение серебросодержащей ткани после обработки СМС.

Пример 2. Берут 8.5 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.1 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 10.8 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 13 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 8.0. В полученный реакционный раствор при комнатной температуре помещают образец хлопчатобумажной ткани массой 17.0 г и выдерживают при перемешивании в течение 5 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 3.4 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра после промывки ткани водным раствором СМС составляет 3.1 мас.%. Прочность связывания серебра с хлопчатобумажной тканью равна 0.91.

Пример 3. Берут 8.5 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.1 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 10.8 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 45 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 10.0. В полученный реакционный раствор при комнатной температуре помещают образец хлопчатобумажной ткани массой 17,0 г и выдерживают при перемешивании в течение 2 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 2.7 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 2.5 мас.%. Прочность связывания серебра с хлопчатобумажной тканью равна 0.92.

Пример 4. Берут 4.2 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.05 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 5.4 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 13 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 8.0. В полученный реакционный раствор при комнатной температуре помещают образец хлопчатобумажной ткани массой 8.4 г и выдерживают при перемешивании в течение 1 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 1.2 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на такни после промывки водным раствором СМС составляет 1.1 мас.%. Прочность связывания серебра с хлопчатобумажной тканью равна 0.92.

Пример 5. Берут 4.2 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.05 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 5.4 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 10 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 7.0. В полученный реакционный раствор при комнатной температуре помещают образец льняной ткани массой 8.4 г и выдерживают при перемешивании в течение 1 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 0.9 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 0.8 мас.%. Прочность связывания серебра с льняной тканью равна 0.89.

Пример 6. Берут 8.5 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0.1 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 10.8 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 10 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 7.0. В полученный реакционный раствор при комнатной температуре помещают образец льняной ткани массой 17.0 г и выдерживают при перемешивании в течение 10 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 2.1 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 1.9 мас.%. Прочность связывания серебра с льняной тканью равна 0.90.

Пример 7. Берут 4.2 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0,05 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 5.4 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 45 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 10.0. В полученный реакционный раствор при комнатной температуре помещают образец льняной ткани массой 8.4 г и выдерживают при перемешивании в течение 1 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 1,1 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 1.0 мас.%. Прочность связывания серебра с льняной тканью равна 0.91.

Пример 8. Берут 8.5 г порошка нитрата серебра AgNO3 и растворяют его в 500 мл воды. К полученному 0,1 М раствору нитрата серебра AgNO3 при перемешивании добавляют в эквимолярном соотношении 10.8 г порошка сульфата ванадила гидрата VOSO4∙3Н2О и 45 мл 25%-ного водного раствора гидроксида аммония до установления рН раствора 10.0. В полученный реакционный раствор при комнатной температуре помещают образец льняной ткани массой 17.0 г и выдерживают при перемешивании в течение 1 мин. После этого ткань отделяют от жидкой фазы, промывают водой и сушат на воздухе при 50°С. По данным рентгенофазового и электронно-микроскопического анализов ткань модифицирована наночастицами серебра Ag, кристаллизующимися в кубической сингонии с параметрами кристаллической решетки a=4.0833 Å (простр. гр. Fm-3m). Частицы серебра имеют овальную форму. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, составляет 20-30 нм. Содержание осажденного серебра на ткани составляет 1.5 мас.%.

Высушенную серебросодержащую ткань промывают водным раствором синтетического моющего средства (СМС) при температуре 40°С в течение 40 мин, отжимают и высушивают на воздухе. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 1.4 мас.%. Прочность связывания серебра с льняной тканью равна 0.93.

Пример 9 (прототип). К 0.5 г льняной ткани приливают 10 мл 0.25 мас.% водного раствора AgNO3, содержащего 1 мас.% раствора аммиака. Реакционную смесь нагревают на водяной бане при 95°С в течение 1.5 ч. Затем ткань промывают водой и сушат на воздухе при температуре 35-40°С. Содержание осажденного серебра на ткани составляет 3.2 мас.%. Содержание осажденного серебра на ткани после промывки водным раствором СМС составляет 2.1 мас.%. Прочность связывания серебра с льняной тканью равна 0.66.

Таким образом, авторами предлагается способ получения серебросодержащей ткани растительного происхождения, обеспечивающий снижение температуры процесса и сокращение длительности процесса, а также увеличение закрепления частиц серебра на поверхности ткани после промывки.

Способ получения серебросодержащей ткани растительного происхождения, включающий обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH, с последующими отделением ткани, промывкой и сушкой, отличающийся тем, что водный раствор готовят путем добавления в 0.05-0.1 М водный раствор нитрата серебра в качестве восстановителя сульфат ванадила гидрат, взятый в эквимолярном количестве по отношению к нитрату серебра, и в качестве соединения, содержащего группу NH, 10-45 мл 25%-ного раствора гидроксида аммония до установления рН, равного 7.0-10.0, а обработку ткани, взятой в массовом количестве 2:1 по отношению к нитрату серебра, осуществляют при комнатной температуре в течение 1-10 мин.
Способ получения серебросодержащей ткани растительного происхождения
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 17.
10.08.2013
№216.012.5cb2

Способ получения наночастиц карбида молибдена

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002489351
Дата охранного документа: 10.08.2013
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8757

Способ получения наностержней диоксида гафния

Изобретение относится к способам получения наноразмерных материалов, а именно к способу получения диоксида гафния с морфологией наностержней, который используется в полупроводниковой индустрии как материал, обладающий большой диэлектрической проницаемости, в качестве каталитической подложки и...
Тип: Изобретение
Номер охранного документа: 0002603788
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8977

Способ получения композита диоксид титана/углерод

Изобретение может быть использовано в производстве эффективных электродных материалов в химических источниках тока, сорбентов. Для получения композита диоксид титана/углерод TiO/C проводят термическое разложение титансодержащего прекурсора в инертной атмосфере. В качестве титансодержащего...
Тип: Изобретение
Номер охранного документа: 0002602536
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
+ добавить свой РИД