×
04.04.2019
219.016.fb7d

Результат интеллектуальной деятельности: Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте

Вид РИД

Изобретение

Аннотация: Изобретение относится к экспериментальной медицине и может быть использовано для оценки эффективности фотодинамической терапии (ФДТ). Проводят исследование методом оптической когерентной ангиографии (ОКА) с визуальной оценкой состояния кровотока в опухоли, трансплантированной мышам на наружной поверхности ушной раковины в центральной ее части через 24 часа после ФДТ. Изображения микрососудистой сетки методом ОКА получают в не менее чем четырех точках, расположенных с разных сторон от центра опухоли на границе с опухолью в пределах нормальной ткани. Рассчитывают плотность сохранившей кровоток микрососудистой сетки (ПСКМС) по каждому ОКА изображению в процентах от площади ОКА изображения. Рассчитывают среднее арифметическое значение ПСКМС по всем граничным точкам. При получении усредненного значения ПСКМС менее 1% ФДТ считают эффективной. Способ обеспечивает повышение точности оценки ответа опухоли на ФДТ в ранний период за счет оценки сохранившей кровоток микрососудистой сетки. 1 з.п. ф-лы, 21 ил., 4 пр.

Изобретение относится к экспериментальной медицине, в частности, может быть использовано для мониторинга эффективности лечения поверхностных опухолей методом фотодинамической терапии (ФДТ) с помощью метода оптической когерентной ангиографии (ОКА), основанного на анализе вариации спекловой картины ОКТ сигнала.

В медицине известен способ лечения поверхностных опухолей методом фотодинамической терапии (ФДТ) (Cabete, J. et al. Long-term recurrence of nonmelanoma skin cancer after topical methylaminolevulinate photodynamic therapy in a dermato-oncology department. Brazilian Annals of Dermatology 90(6), 846-850, 2015; Gangloff, P. et al. Photodynamic therapy as salvage treatment for recurrent head and neck cancer. Médecine Buccale Chirurgie Buccale 18, 325-331, 2012).

ФДТ представляет собой метод локальной активации светом накопившегося в опухоли фотосенсибилизатора, в присутствии кислорода тканей приводящий к развитию фотохимической реакции и разрушению опухолевых клеток (Странадко  Е. Ф. Исторический очерк развития фотодинамической терапии. Лазер. мед. 6(1), 4-8, 2002). Известно, что основную роль в ФДТ играет синглетный кислород, который образуется как при передаче энергии от возбуждённой молекулы фотосенсибилизатора молекуле кислорода, так и в молекулах липидов и белков мембран клеток и внутриклеточных органелл при взаимодействии с квантом света. Синглетный кислород разрывает цепочки молекул с образованием свободных радикалов, повреждением клеточных мембран и гибели клеток (Красновский  А. А. Фотодинамическое действие и синглетный кислород. Биофизика. 49(2), 305–321, 2004).

Механизм ФДТ достаточно сложный и полностью не изучен. Сложность метода заключается в первую очередь в многокомпонентности. Так, для ФДТ требуется лекарственный препарат – фотосенсибилизатор, который должен накопиться в опухоли в достаточной концентрации. От места локализации фотосенсибилизатора в опухолевой ткани (в самих опухолевых клетках, в сосудах, строме) зависит степень повреждения ткани (Shirmanova M, et al. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS ONE 10(12): e0144617, 2015; Serebrovskaya E.O. et al. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed. J Biomed Opt. 19(7):071403, 2014).

Другой компонент ФДТ – свет. Доза облучения, плотность мощности, длительность воздействия, а также временной интервал между введением препарата и облучением, играют важную роль в эффективности ФДТ (Fignar V. et al. Drug and light dose dependence of photodynamic therapy: a study of tumor and normal tissue response. Photochemistry and Photobiology 46(5), 837-841, 1987; Mallidi S. et al. Prediction of Tumor Recurrence and Therapy Monitoring Using Ultrasound-Guided Photoacoustic Imaging. Theranostics 5(3), 289-301, 2015).

Важную роль в разрушении опухоли в результате ФДТ играет так называемый сосудистый компонент. Повреждение сосудов при ФДТ впервые обнаружила B.W. Henderson (1985), считавшая его основным в механизме деструкции опухолей. Результатом фотодинамической реакции является разрушение эндотелия кровеносных сосудов, активация тромбоцитов с высвобождением тромбоксана и агрегация тромбоцитов (Henderson  B. W., Fingar V. H. Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 47, 3110–3114, 1987), образование пристеночных и окклюзирующих тромбов, сдавление капилляров в результате интерстициального отека (Fingar V. H., et al. Role of thromboxane and prostacyclin release on photodynamic therapy induced tumor destruction. Cancer Res. 50, 2599–2603, 1990). Все вышеперечисленное приводит к нарушению кровотока в ткани опухоли вплоть до полного его прекращения, приводящего к развитию некроза.

Ввиду многокомпонентности и сложности метода ФДТ, желательно контролировать все этапы процедуры, начиная с накопления фотосенсибилизатора, лазерной дозиметрии, выхода синглетного кислорода и, заканчивая, первичным разрушением ткани.

Поиск объективного критерия эффективности ФДТ по-прежнему является актуальной задачей для обеспечения индивидуальной терапии, поскольку из-за гетерогенности опухоли, предсказать эффективность ФДТ затруднительно: один и тот же тип опухоли может реагировать по-разному на одно и тоже проводимое лечение. Сложность выявления критерия связана как с нехваткой неинвазивных методов прижизненной оценки состояния тканей и кровотока, которые могли бы быть применены в условиях клиники, так и недостаточным пониманием механизмов ФДТ. Глубокое изучение механизмов ФДТ целесообразно проводить на экспериментальных животных с применением современных неинвазивных методов исследования. Экспериментальная модель должна была адекватно подобрана как для ФДТ, так и для метода оценки эффективности. Это позволит получать корректные, воспроизводимые результаты и делать правильные выводы.

В стандартных клинических протоколах эффективность ФДТ контролируют визуально через 3, 6, 12 месяцев, осматривая очаг поражения. При подозрении на рецидив болезни берут биопсию для подтверждения диагноза. Визуальная оценка в отдаленный период (через несколько месяцев), не позволяет повлиять на количество рецидивов. В отчете «Evaluation of Recurrence After Photodynamic Therapy with Topical Methylaminolaevulinate for 157 Basal Cell Carcinomas in 90 Patients» показано, что через 6 месяцев после ФДТ базальноклеточного рака кожи количество рецидивов достигает 20%, через 1 год – почти 30%, а через 5 лет – около 45% (Lindberg-Larsen R., et al. Evaluation of Recurrence After Photodynamic Therapy with Topical Methylaminolaevulinate for 157 Basal Cell Carcinomas in 90 Patients, Acta Derm Venereol 92, 144–147, 2012).

Наиболее точным способом оценки ожидаемой эффективности фотодинамической реакции является измерение выхода синглетного кислорода. Современные методы оценки выхода синглетного кислорода включают как методы точечной спектроскопии, так и визуализации. Все методы оценки выхода синглетного кислорода можно поделить на прямые и косвенные. Косвенные методы основаны на использовании зондовой молекулы, которая при взаимодействии с синглетным кислородом меняет свои физические свойства. Для детекции этих изменений применяют как электронный парамагнитный резонанс, так и флуоресцентные или хемилюминесцентные методы. Для каждого из методов используются свои зонды (B. Li et al. Singlet Oxygen Detection During Photosensitization. J. Innovative Optical Health Sciences 6(1) 1330002, 2013). Преимуществом этих методов является высокая чувствительность. К существенным недостаткам методов следует отнести потенциальную токсичность зондов и невозможность применения их in vivo, особенно для количественных измерений. Применение зондов делает результат зависимым от фармакокинетики, биораспределения и микролокализация зонда в клетке, что трудно контролируется в сложных системах in vivo.

Прямое детектирование люминесценции от синглетного кислорода на длине волны 1270 нм принято считать «золотым стандартом» в ФДТ дозиметрии (Niedre M. et al. Direct Near‐infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo. Photochemistry and Photobiology 75(4), 382-391, 2002). Отсутствие оптимальных технических решений ограничивает возможность использования этого метода в клинической практике. Слабый люминесцентный сигнал и короткое время жизни синглетного кислорода требуют использования высокочувствительных детекторов. Квантовая эффективность имеющихся на сегодняшний день инфракрасных детекторов очень мала, к примеру, самые совершенные фотоэлектронные умножители (PMT, R5509-43/H10330-45, Hamamatsu, Japan) имеют эффективность <2% (Li B. et al. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J. Biophotonics 9(11–12), 1314–1325, 2016).

Известен способ оценки ожидаемой эффективности ФДТ по степени выгорания фотосенсибилизатора на флуоресцентных изображениях опухоли, полученных после ФДТ (Гамаюнов С.В. и др. Флюоресцентный мониторинг фотодинамической терапии рака кожи в клинической практике. Современные технологии в медицине 7(2), 75-83, 2015). Главным недостатком большинства устройств, реализующих этот метод, является высокая погрешность измерения, обусловленная точечным съемом данных. Кроме того, существуют работы, ставящие под сомнение строгую взаимосвязь между процентом выгорания фотосенсибилизатора и степенью опухолевого патоморфоза (Baran, T.M., Foster, T.H. Fluence Rate-Dependent Photobleaching of Intratumorally-Administered Pc 4 Does Not Predict Tumor Growth Delay. Photochem Photobiol 88(5), 1273–1279, 2012).

Поскольку ФДТ повреждает сосудистое русло, то полезным способом оценки эффективности ФДТ на уровне ткани могут служить методы оценки расстройств кровообращения.

Популярный в клинической практике метод лазерной доплеровской флоуметрии (ЛДФ) используется для оценки параметров кровотока. Метод ЛДФ основан на оптическом зондировании тканей монохроматическим светом и спектральном анализе светового сигнала, отраженного от движущихся эритроцитов. Величина сигнала ЛДФ определяется концентрацией эритроцитов в зондирующем объеме и их скоростью (Козлов В.И. и др. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции крови. Методическое пособие для врачей. Москва 2012, 32 стр.). Недостатками метода являются нестабильность и высокая погрешность измерений. (Eriksson S. et al. Non-invasive imaging of microcirculation: a technology review. Medical Devices: Evidence and Research 7, 445–452, 2014).

Известен метод фотоакустического имиджинга, позволяющий визуализировать микроциркуляцию, не требующий применения красителя, который в настоящее время используется в экспериментах, и пока не получил широкого применения в клинических исследованиях ввиду дороговизны установки. Метод фотоакустического имиджинга основан на детекции акустических волн, генерируемых гемоглобином при поглощении лазерного импульса. Метод позволяет визуализировать кровеносные сосуды в биологических тканях на глубине до нескольких миллиметров. Достоинствами метода являются высокая контрастность изображения и высокое пространственное разрешение (10-50 мкм). Существенным ограничением метода для его использования при оценке эффективности ФДТ, является невозможность дифференцировать сосуды с движущейся и стоящей кровью. В результате ФДТ происходит тромбоз сосудов, приводящий к «сосудистому блоку», т.е. полной остановке кровотока. Метод фотоакустического имиджинга сосуды с текущей кровью и блокированные сосуды визуализирует в равной мере (Kolkman R. G. M. et al. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode. Lasers Med Sci. 21, 134-139, 2006; Valluru K.S. et al. Photoacoustic Imaging in Oncology: Translational Preclinical and Early Clinical Experience. Radiology 280(2), 332-349, 2016). В тоже время известна работа, в которой методом фотоакустического имиджинга изучали параметр насыщения ткани кислородом до ФДТ, через 6 часов и 24 часа после ФДТ. Установлено, что только через 24 часа после ФДТ по значению параметра насыщения опухоли кислородом можно предсказать вероятность хорошего ответа на ФДТ или рецидива (Mallidi S. et al. Prediction of Tumor Recurrence and Therapy Monitoring Using Ultrasound-Guided Photoacoustic Imaging. Theranostics 5(3), 289-301, 2015). Недостатком описанного метода является высокая стоимость перестраиваемого лазера, необходимого для этой установки, что ограничивает широкое клиническое применение метода.

Известен способ визуализации сосудов методом оптической когерентной томографии с эффектом Доплера (Доплер ОКТ). Эффект Доплера заключается в изменении частоты и длины волны излучения, воспринимаемых детектором, вследствие движения рассеивателей и/или движения детектора. Приближение рассеивателей к детектору увеличивает частоту излучения, отдаление – уменьшает её. По изменению частоты вычисляется скорость рассеивателей. Доплеровские ОКТ методы позволяют формировать трехмерные изображения кровотока в тканях с возможностью получения количественной информации. Основные трудности этого подхода связаны с неспособностью обнаруживать сосуды, ориентированные почти перпендикулярно направлению распространения зондирующего оптического пучка (Зайцев В.Ю. и др. Современные тенденции в многофункциональной оптической когерентной томографии. II. Метод корреляционной стабильности в ОКТ-эластографии и методы визуализации кровотока). Известна работа, в которой методом эндоскопической Доплер ОКТ показана сосудистая реакция слизистой пищевода Баррета на ФДТ, однако критерий эффективности терапии авторами не сформулирован (Standish B.A. et al. Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus. Gastrointest Endosc. 66(2), 326-33, 2007).

Известен метод оптической когерентной ангиографии (ОКА), основанный на анализе вариации спекловой картины ОКТ сигнала и позволяющий визуализировать сосуды с ненарушенным кровотоком; метод не чувствителен к углу между зондирующим излучением и направлением кровотока. Тромбоз и гемостаз, возникающие как следствие ФДТ, приводят к остановке кровотока, и в этом случае сосуды перестают визуализироваться на ОКА. Пространственное разрешение метода составляет 10-15 мкм. Прибор портативный, зонд стерилизуемый и может применяться как в экспериментальных, так и в клинических условиях (Maslennikova A.V., et al. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography. Scientific Reports 7: 16505, 2017; Sirotkina, M. A. et al. Photodynamic therapy monitoring with optical coherence angiography. Sci. Rep. 7, 41506, 2017).

Известен способ оценки эффективности ФДТ на мышиной модели аденокарциномы толстой кишки СТ-26 методом ОКА (Sirotkina, M. A. et al. Photodynamic therapy monitoring with optical coherence angiography. Sci. Rep. 7, 41506, 2017). Способ основан на проведении ОКА мониторинга состояния кровотока опухоли СТ-26, трансплантированной на наружной поверхности ушной раковины в центральной её части мышам линии Balb/c, после ФДТ. ОКА исследование поводили в опухоли до ФДТ и через 24 часа после ФДТ. Полученные ОКА изображения подвергали визуальной оценке. Отсутствие микрососудистой сетки на ОКА изображениях опухоли через 24 часа после ФДТ (из-за прекращения кровотока) считали признаком ответивших на лечение опухолей. Наличие микрососудистой сетки на ОКА изображениях опухоли через 24 часа после ФДТ (из-за сохранения кровотока) считали плохим ответом опухоли на ФДТ. Установленный критерий коррелировал с процентом некротизированных опухолевых клеток через 24 часа. В случае прекращения кровотока в опухоли через 24 часа после ФДТ, регистрируемого методом ОКА, через 7 дней после ФДТ возникал тотальный некроз опухолей (более 95% от площади опухоли занимали клетки опухоли в состоянии некроза); сохранение кровотока в опухоли, регистрируемого методом ОКА через 24 часа после ФДТ приводило к неполному некрозу опухолей (менее 95% от площади опухоли). Указанный способ выбран в качестве прототипа.

Недостатком способа является то, что с помощью выявленного критерия только 80% опухолей ответивших и не ответивших на ФДТ удается определить правильно.

Таким образом, задачей, на решение которой направлено настоящее изобретение, является усовершенствование способа оценки эффективности фотодинамической терапии.

Техническим результатом предлагаемого способа является повышение точности оценки ответа опухоли на ФДТ в ранний период.

Технический результат достигается тем, что в способе оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии (ОКА) в эксперименте, включающем проведение ОКА исследования с визуальной оценкой состояния кровотока в опухоли, трансплантированной мышам на наружной поверхности ушной раковины в центральной её части, до фотодинамической терапии (ФДТ) и через 24 часа после ФДТ, через 24 часа после ФДТ в не менее чем четырех точках, расположенных с разных сторон от центра опухоли на границе с опухолью в пределах нормальной ткани, методом ОКА получают изображения микрососудистой сетки, рассчитывают плотность сохранившей кровоток микрососудистой сетки (ПСКМС) по каждому ОКА изображению в процентах, полученному в граничных точках, рассчитывают среднее арифметическое значение ПСКМС по всем граничным точкам, при получении усредненного значения ПСКМС, рассчитанного по ОКА изображениям граничных точек после ФДТ, менее 1% ФДТ считают эффективной.

Целесообразно при исследовании состояния кровотока в нормальной ткани на границе с опухолью проводить ОКА исследование в четырех диаметрально противоположных точках, расположенных на взаимно-перпендикулярных диаметрах.

Способ осуществляют следующим образом:

В эксперименте на мышах с трансплантируемой опухолью на наружной части ушной раковины в центральной её части, при достижении опухоли наибольшего линейного размера 3,5 мм проводят ОКА-исследование, используя скоростной спектральный оптический когерентный томограф с функцией ангиографии, с длиной волны зондирующего излучения 1300 нм, пространственным разрешением 10-15 мкм, глубиной изображения до 1,2 мм, время получения 3D ОКА-изображения 26 секунд. Полученные в процессе исследования ОКА-изображения, выводятся в реальном времени на монитор компьютера, при этом визуализируются кровеносные сосуды с ненарушенным кровотоком, сосуды с нарушенным кровотоком не визуализируются. Исследование проводят в центре опухоли и в не менее чем четырех точках, расположенных с разных сторон от центра опухоли на границе с опухолью в пределах нормальной ткани. При наличии на ОКА изображениях плотной хаотично расположенной микрососудистой сетки в зоне опухоли проводят фотодинамическую терапию. В качестве фотосенсибилизатора используют Фотодитазин (Вета-гранд, Россия) в дозе 5 мг/кг массы животного. ФДТ проводят через 1 час после внутривенного введения фотосенсибилизатора диодным лазером с длиной волны 658 нм, соответствующей длине волны поглощения фотодитазина, в режиме 100 Дж/см2 с плотностью мощности 100 мВт/см2. Через 24 часа после ФДТ проводят ОКА-исследование в тех же областях, рассчитывают плотность сохранившей кровоток микрососудистой сетки (ПСКМС) по ОКА изображениям, рассчитывают среднее арифметическое значение ПСКМС по всем граничным точкам, при получении усредненного значения ПСКМС, рассчитанного по ОКА изображениям граничных точек после ФДТ, менее 1% ФДТ считают эффективной.

Предлагаемый способ использован в оценке эффективности ФДТ. Предлагаемым способом исследовано 30 животных – самки линии Balb/c с привитой на ухо опухолью колоректального рака мышей CT-26 в дозе 200 тыс. клеток в 20 мкл буферного раствора PBS (n=23) и привитым на ухо раком молочной железы мышей 4Т1 (n=7). Исследование проводилось в четырех диаметрально противоположных точках, расположенных на взаимно-перпендикулярных диаметрах (фиг. 1). На фигуре 1 представлена фотография уха с привитой опухолью и схемой проведения ОКА исследования, где позиция 1 – центр опухоли, позиции 2-5 – точки измерения на границе с опухолью. 13 животных с опухолью СТ-26 характеризовались отсутствием сохранившей кровоток микрососудистой сетки на ОКА изображениях в опухоли через 24 часа после ФДТ и снижением плотности, сохранившей кровоток микрососудистой сетки на границе опухоли в точках 2-5 в среднем до значений менее 1% от площади ОКА изображения, через 7 дней после ФДТ такие опухоли были в состоянии тотального некроза. У 10 животных с опухолью СТ-26 зафиксировано снижение плотности сохранившей кровоток микрососудистой сетки в точках на границе опухоли, усредненное значение по точкам 2-5 получено более 1% от площади ОКА изображения, через 7 дней опухоли погибли частично, при этом 5 животных характеризовались отсутствием сохранившей кровоток микрососудистой сетки в опухоли на ОКА изображениях и 5 животных характеризовались наличием сохранившей кровоток микрососудистой сетки в опухоли и неизменным значением плотности сохранившей кровоток микрососудистой сетки вокруг опухоли в точках 2-5. 5 животных с опухолью 4Т1 характеризовались отсутствием сохранившей кровоток микрососудистой сетки на ОКА изображениях в опухоли через 24 часа после ФДТ и снижением плотности сохранившей кровоток микрососудистой сетки на границе опухоли в точках 2-5 в среднем до значений менее 1% от площади ОКА изображения, через 7 дней после ФДТ такие опухоли были в состоянии тотального некроза. 2 животных с опухолью 4Т1 характеризовались отсутствием сохранившей кровоток микрососудистой сетки в опухоли на ОКА изображениях через 24 часа и снижением плотности, сохранившей кровоток микрососудистой сетки на границе опухоли в точках 2-5 в среднем до значений более 1% от площади ОКА изображения, через 7 дней опухоли погибли частично.

Таким образом, разработанный способ позволяет осуществить раннюю малоинвазивную оценку эффективности ФДТ и с вероятностью 100% определить опухоли ответившие и не ответившие на ФДТ, т.к. он характеризуется получением дополнительной информации о состоянии кровотока в нормальной ткани на границе с опухолью.

Примеры конкретного использования предлагаемого способа

Пример 1.

Выписка из протокола эксперимента № 27

13 июля 2016 г. Самка мышей линии Balb/c № 14, масса 22,0 г с привитой внутрикожно опухолью аденокарцинома толстой кишки мыши (СТ-26). Прививку опухоли проводили тонкой иглой 32G (0,23х12мм) путем вкола суспензии культуры опухолевых клеток в дозе 200 тысяч клеток в 20 мкл среды PBS на наружной поверхности ушной раковины в центральной её части 29 июня 2016 г. ФДТ на 14 день роста опухоли, когда ее объем составлял 11,6 мм3. Внутривенно в хвостовую вену вводили фотодитазин (Вета-гранд, Россия) в дозе 5 мг/кг массы животного. Фотодинамическую терапию начинали через 1 час после введения фотодитазина. Облучали опухоль и по 2 мм окружающей нормальной ткани с каждой стороны диодным лазером с длиной волны 658 нм в дозе 100 Дж/см2 при плотности мощности 100 мВт/см2. До ФДТ получали ОКА изображения из центра опухоли и 4 изображения окружающей ткани на границе с опухолью в четырех диаметрально противоположных точках. Через 24 часа после ФДТ ОКА изображения получали в тех же точках. На полученных изображениях оценивали плотность сохранившей кровоток микрососудистой сетки (ПСКМС), по точкам 2-5 получали среднее значение ПСКМС. Через 7 дней после ФДТ проводили гистологическое исследование опухолевой ткани. ПСКМС в опухоли до ФДТ составила 8,5%, а через 24 часа после ФДТ – 0%. ОКА изображение, полученное из центра опухоли СТ-26 до проведения ФДТ приведено на фигуре 2, через 24 часа после проведения ФДТ - на фигуре 3. ОКА изображения полученные из четырех точек на границе опухоли СТ-26, соответствующие позициям 2-5 фиг. 1, до проведения ФДТ приведено на фигуре 4, где а – ОКА изображение, полученное из точки, соответствующей позиции 2 фиг.1, б - ОКА изображение, полученное из точки, соответствующей позиции 3 фиг.1, в - ОКА изображение, полученное из точки, соответствующей позиции 4 фиг.1, г - ОКА изображение, полученное из точки, соответствующей позиции 5 фиг.1, а через 24 часа после проведения ФДТ ОКА изображения, полученные в тех же точках, - на фигуре 5. ПСКМС в нормальной ткани на границе с опухолью до ФДТ составила: 2,4%, 3,3%, 3,5%, 3,7%, в среднем 3,225%, а через 24 часа после ФДТ – 0,0%, 1,6%, 0,7%, 0,0% соответственно, в среднем 0,575%, что менее 1%, поэтому ФДТ оценена как эффективная, т.е. опухоль ответила на ФДТ. На гистологических препаратах через 7 дней после ФДТ обнаружен тотальный, 100% некроз опухолевых клеток – опухоль погибла полностью, что не предполагает развитие рецидива. Фотография гистологического препарата опухоли СТ-26 через 7 дней после ФДТ (окраска гематоксилином и эозином) представлен на фигуре 6.

Пример 2.

Выписка из протокола эксперимента № 27

13 июля 2016 г. Самка мышей линии Balb/c № 20, масса 22,1 г с привитой внутрикожно опухолью аденокарцинома толстой кишки мыши (СТ-26). Прививку опухоли проводили 29 июня 2016 г. как описано в примере 1. ФДТ проводили на 14 день роста опухоли, когда ее объем составлял 10,0 мм3. ФДТ проводили по методике, приведенной в примере 1. ОКА исследование проводили по методике, описанной в примере 1. ОКА изображение, полученное из центра опухоли СТ-26 до проведения ФДТ приведено на фигуре 7, через 24 часа после проведения ФДТ - на фигуре 8. ПСКМС в опухоли до ФДТ составила 8,1%, а через 24 часа после ФДТ – 0%. Выбор граничных точек и измерения в них проводились аналогично примеру 1. ОКА изображения, полученные из четырех точек на границе опухоли СТ-26, до проведения ФДТ приведены на фигуре 9, через 24 часа после проведения ФДТ - на фигуре 10. ПСКМС в нормальной ткани вокруг опухоли, рассчитанная по ОКА-изображениям, до ФДТ составила: 3,7%, 1,4%, 2,2%, 2,2 %, в среднем 2,375%, а через 24 часа после ФДТ – 3,0%, 2,1%, 2,1%, 0,0%, в среднем 1,8%, что более 1%, поэтому ФДТ оценена как не эффективная, т.е. опухоль не ответила на ФДТ. На гистологических препаратах через 7 дней после ФДТ обнаружен частичный некроз опухолевых клеток, занимающий 60% площади опухоли – опухоль погибла частично, возможен рецидив, что требует изменения тактики лечения. Фотография гистологического препарата опухоли СТ-26 через 7 дней после ФДТ (окраска гематоксилином и эозином) представлен на фигуре 11.

Пример 3.

Выписка из протокола эксперимента № 36

05 февраля 2018 г. Самка мышей линии Balb/c № 20, масса 20,4 г с привитой внутрикожно опухолью рак молочной железы мыши (4Т1). Прививку опухоли проводили 25 января 2018 г. как описано в примере 1. ФДТ проводили на 12 день роста опухоли, когда ее объем составлял 39,7 мм3. ФДТ проводили по методике, приведенной в примере 1. ОКА исследование проводили по методике, описанной в примере 1. ОКА изображение, полученное из центра опухоли 4Т1, до проведения ФДТ приведено на фигуре 12, через 24 часа после проведения ФДТ - на фигуре 13. ПСКМС в опухоли до ФДТ составила 0,65%, а через 24 часа после ФДТ - 0%. Выбор граничных точек и измерения в них проводились аналогично примеру 1. ОКА изображения, полученные из четырех точек на границе опухоли 4Т1, до проведения ФДТ приведены на фигуре 14, через 24 часа после проведения ФДТ - на фигуре 15. ПСКМС в нормальной ткани вокруг опухоли до ФДТ составила: 3,8%, 3,3%, 2,4%; 4,0 %, в среднем 3,375%, а через 24 часа после ФДТ –0,6%; 1,6%; 0,0%; 0,03%, в среднем 0,575% что менее 1%, поэтому ФДТ оценена как эффективная, т.е. опухоль ответила на ФДТ. На гистологических препаратах через 7 дней после ФДТ обнаружен тотальный, 100% некроз опухолевых клеток – опухоль погибла полностью, что не предполагает развитие рецидива. Фотография гистологического препарата опухоли 4Т1 через 7 дней после ФДТ (окраска гематоксилином и эозином) представлен на фигуре 16.

Пример 4.

Выписка из протокола эксперимента № 36

05 февраля 2018 г. Самка мышей линии Balb/c № 13, масса 21,6 г с привитой внутрикожно опухолью рак молочной железы мыши (4Т1). Прививку опухоли проводили 25 января 2018 г. как описано в примере 1. ФДТ проводили на 12 день роста опухоли, когда ее объем составлял 38,4 мм3. ФДТ проводили по методике, приведенной в примере 1. ОКА исследование проводили по методике, описанной в примере 1. ОКА изображение, полученное из центра опухоли 4Т1 до проведения ФДТ приведено на фигуре 17, через 24 часа после проведения ФДТ - на фигуре 18. Выбор граничных точек и измерения в них проводились аналогично примеру 1. ПСКМС в опухоли до ФДТ составила 0,8%, а через 24 часа после ФДТ - 0%. ОКА изображения, полученные из четырех точек на границе опухоли 4Т1, до проведения ФДТ приведены на фигуре 19, через 24 часа после проведения ФДТ - на фигуре 20. ПСКМС в нормальной ткани вокруг опухоли до ФДТ составила: 0,4%; 3,1%; 3,5%; 1,6%, в среднем 2,15%, а через 24 часа после ФДТ – 0,9%, 2,5%, 0,2%, 1,2% в среднем 1,2%, что более 1%, поэтому ФДТ оценена как не эффективная, т.е. опухоль не ответила на ФДТ. На гистологических препаратах через 7 дней после ФДТ обнаружен частичный некроз, занимающий 40% площади опухоли – опухоль погибла частично, возможен рецидив, что требует изменения тактики лечения. Фотография гистологического препарата опухоли 4Т1 через 7 дней после ФДТ (окраска гематоксилином и эозином) представлен на фигуре 21.

Предлагаемый способ оценки эффективности ФДТ является надежным, объективным и позволяет неинвазивно в режиме реального времени в ранний период после ФДТ (через 24 часа) по изменению плотности сохранившей кровоток микрососудистой сетки определить ответившие и не ответившие на ФДТ опухоли, что позволит избежать рецидивов в позднем периоде за счет своевременного изменения тактики лечения.

Предлагаемый способ может быть применен для подбора режима ФДТ для разных опухолевых моделей, для апробации новых видов фотосенсибилизаторов.


Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте
Источник поступления информации: Роспатент

Показаны записи 1-10 из 56.
10.05.2018
№218.016.4272

Способ прогнозирования развития неблагоприятных исходов инфаркта миокарда с подъемом сегмента st

Изобретение относится к области медицины, а именно к диагностике. Выполняют оценку возраста пациента и оценивают состояние коронарных артерий КА до и после ЧКВ по методике BCIS-1 Myocardial Jeopardy Score (JS). Определяют индекс реваскуляризации (ИР) по отношению разности состояния КА до ЧКВ и...
Тип: Изобретение
Номер охранного документа: 0002649517
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.4296

Способ лечения хронического одонтогенного верхнечелюстного синусита, осложненного наличием ороантрального сообщения

Изобретение относится к области медицины, а именно к оториноларингологии и челюстно-лицевой хирургии, и предназначено для использования при лечении воспалительных заболеваний околоносовых пазух, сопровождающихся ороантральным сообщением. Производят адренализцию носовых ходов с оперируемой...
Тип: Изобретение
Номер охранного документа: 0002649515
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.42d7

Способ пластики перфорации верхнечелюстного синуса

Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и предназначено для использования при пластике перфорации верхнечелюстного синуса. Осуществляют выкраивание небного лоскута, расщепление его на субэпителиальный васкуляризированный и эпителиальный лоскуты,...
Тип: Изобретение
Номер охранного документа: 0002649514
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.4e44

Способ непосредственной дентальной имплантации

Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и предназначено для применения при лечении больных с частичной потерей зубов в переднем отделе с использованием дентальных имплантатов. Осуществляют удаление зуба и патологических тканей, обработку лунки...
Тип: Изобретение
Номер охранного документа: 0002652585
Дата охранного документа: 26.04.2018
29.05.2018
№218.016.5560

Способ определения целевой артерии для хирургической реваскуляризации больных с критической ишемией нижних конечностей

Изобретение относится к медицине, а именно к сосудистой хирургии, и может быть использовано для определения целевой артерии для хирургической реваскуляризации больных с критической ишемией нижней конечности. Выполняют электронейромиографию. Определяют параметры проводимости нервных стволов...
Тип: Изобретение
Номер охранного документа: 0002654415
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5569

Способ удлинения подлопаточной мышцы сухожилием длинной головки двуглавой мышцы плеча при тотальном эндопротезировании плечевого сустава

Изобретение относится к травматологии и ортопедии и может быть применимо для удлинения подлопаточной мышцы сухожилием длинной головки двуглавой мышцы плеча при тотальном эндопротезировании плечевого сустава. Отделяют сухожилие подлопаточной мышцы от места прикрепления путем декортикации....
Тип: Изобретение
Номер охранного документа: 0002654404
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5af9

Способ лечения эндометриальной дисфункции

Изобретение относится к медицине, а именно к гинекологии и физиотерапии, и может быть использовано для лечения эндометриальной дисфункции. Для этого осуществляют внутриматочную инстилляцию раствора гидролизата плаценты в дозе 112 мг/2 мл через день, на курс 3-5 внутриматочных процедур. Между...
Тип: Изобретение
Номер охранного документа: 0002655538
Дата охранного документа: 28.05.2018
10.08.2018
№218.016.7b2f

Способ лечения метастазов колоректального рака в печени

Изобретение относится к хирургии и может быть применимо для лечения синхронных метастазов колоректального рака в печени. На первом этапе проводят одномоментное интраоперационное удаление первичного очага и метастазов из менее пораженной доли путем паренхимосохраняющей резекции, перевязку ветви...
Тип: Изобретение
Номер охранного документа: 0002663800
Дата охранного документа: 09.08.2018
17.08.2018
№218.016.7ca6

Способ стабилизации позвоночно-двигательного сегмента транспедикулярным инструментарием у пациентов с остеопорозом позвоночника

Изобретение относится к хирургии позвоночника и может быть применимо для стабилизации позвоночно-двигательного сегмента транспедикулярным инструментарием у пациентов с остеопорозом позвоночника. На уровнях введения винтов с двух сторон через ножки позвонков формируют каналы для доступа в тела...
Тип: Изобретение
Номер охранного документа: 0002663940
Дата охранного документа: 13.08.2018
14.09.2018
№218.016.87f5

Способ диагностики мочекаменной болезни

Изобретение относится к медицине, в частности к нефрологии и урологии,и может быть использовано для диагностики мочекаменной болезни. Способ диагностики мочекаменной болезни включает предварительную подготовку образца сыворотки крови пациента, исследование подготовленного образца сыворотки с...
Тип: Изобретение
Номер охранного документа: 0002666948
Дата охранного документа: 13.09.2018
Показаны записи 1-10 из 28.
27.10.2013
№216.012.7ae3

Способ оценки содержания пероксида водорода в опухолевых клетках при воздействии на них противоопухолевого препарата

Изобретение относится к медицине, в частности к онкологии, и может быть применено для определения содержания пероксида водорода (HO) в опухолевых клетках при воздействии на них противоопухолевого препарата, в частности цисплатина. Способ осуществляют следующим образом: на опухолевые клетки,...
Тип: Изобретение
Номер охранного документа: 0002497121
Дата охранного документа: 27.10.2013
20.06.2014
№216.012.d395

Способ фотодинамической терапии опухолей

Изобретение относится к медицине, онкологии и может быть использовано для фотодинамической терапии опухолей. Способ включает использование фотосенсибилизатора (ФС), предварительную оценку его наличия в опухоли по его флуоресценции с последующим облучением опухоли оптическим излучением с длиной...
Тип: Изобретение
Номер охранного документа: 0002519936
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.df37

Однодоменное мини-антитело aher2/askbr3-1, специфически связывающее рецептор эпидермального фактора роста her2/erbb2/neu и способное через это взаимодействие проникать внутрь клетки-мишени (интернализоваться), способ получения данного антитела и способ детекции белка her2/erbb2/neu и клеток, экспрессирующих этот белок в повышенном количестве, с помощью мини-антитела aher2/askbr3-1

Настоящее изобретение относится к области иммунологии. Предложено однодоменное мини-антитело, специфически связывающее белок-рецептор эпидермального фактора роста HER2/ERBB2/neu человека, полученное при иммунизации двугорбого верблюда (Camelus bactrianus) препаратом опухолевых клеток SKBR3, и...
Тип: Изобретение
Номер охранного документа: 0002522929
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.016e

Способ формирования эквидистантных по оптической частоте отсчетов при спектральном интерференционном приеме рассеянного назад сверхширокополосного излучения

Способ включает регистрацию оптического спектра суммы интерферирующих волн при различных значениях взаимной задержки, выделение модулирующих функций, соответствующих взаимным задержкам, определение нелинейности распределения их фазы, вычисление корректирующей таблицы, регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002531764
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.0676

Способ оптимизации метода проекции максимальной интенсивности для визуализации скалярных трехмерных данных в статическом режиме, в интерактивном режиме и в реальном времени

Изобретение относится к обработке данных изображения, а именно к визуализации трехмерного массива данных. Техническим результатом является повышение скорости вычислений за счет уменьшения объема оперативной памяти, затрачиваемой на построение изображения. Cпособ оптимизации метода проекции...
Тип: Изобретение
Номер охранного документа: 0002533055
Дата охранного документа: 20.11.2014
20.10.2015
№216.013.83ee

Способ регистрации внутриклеточного ph опухолевых клеток

Изобретение относится к экспериментальной медицине и может быть использовано для регистрации внутриклеточного рН опухолевых клеток. Для этого осуществляют введение сенсора на внутриклеточный рН, регистрацию интенсивности флуоресценции при возбуждении на двух длинах волн в областях максимального...
Тип: Изобретение
Номер охранного документа: 0002565377
Дата охранного документа: 20.10.2015
10.01.2016
№216.013.9ed6

Способ оценки функционального состояния коллагеносодержащей ткани

Изобретение относится к медицине, урологии, стоматологии, гинекологии, лучевой диагностике, ларингологии и может быть использовано для оценки функционального состояния коллагенсодержащих тканей, в частности коллагеновых волокон стромы слизистых оболочек. Проводят исследование внутренней...
Тип: Изобретение
Номер охранного документа: 0002572299
Дата охранного документа: 10.01.2016
13.01.2017
№217.015.7070

Способ искусственного воспроизводства европейского сома (silurus glanis l.)

Способ включает отбор половозрелых производителей, инъецирование их суспензией гипофиза рыб, отбор половых продуктов, осеменение икры, обесклеивание ее раствором молока при перемешивании пузырьками воздуха. После обесклеивания икру отмывают водой и подвергают обработке отваром коры и листьев...
Тип: Изобретение
Номер охранного документа: 0002596838
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.85a3

Модифицированный биосенсор для детекции внутриклеточной рн

Группа изобретений относится к области биотехнологии. В группу изобретений входят нуклеиновая кислота, которая кодирует флуоресцентный биосенсор для регистрации изменения рН, аминокислотная последовательность которого показана в SEQ ID No: 4, а также кассета экспрессии и эукариотическая клетка,...
Тип: Изобретение
Номер охранного документа: 0002603060
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b94f

Устройство для регистрации изображений кросс-поляризационной низкокогерентной оптической интерферометрии

Заявленная группа изобретений относится к устройствам получения и обработки изображений оптической интерферометрии и может быть использовано для прижизненной визуализации и количественной оценки деполяризующих свойств отдельных участков биологических тканей, в том числе человеческих. Заявленное...
Тип: Изобретение
Номер охранного документа: 0002615035
Дата охранного документа: 03.04.2017
+ добавить свой РИД