×
20.04.2016
216.015.3594

Результат интеллектуальной деятельности: СПОСОБ ПРОВЕДЕНИЯ САМОХОДНЫХ МОДЕЛЬНЫХ ИСПЫТАНИЙ СУДОВ В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области судостроения и касается проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Предложен способ проведения модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями в ледовых условиях, а затем на чистой воде в ледовом канале, оставшемся после прохождения буксируемой модели в ледяном поле, который предварительно очищают от битого льда. Буксировочная тележка бассейна обеспечивает движение модели с заданными скоростями, а частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения. По результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели R, значение которой вычисляют в виде R=F+F, где F и F - сила между моделью и буксировочной тележкой в ледовых условиях и в условиях чистой воды соответственно, причем при суммировании значения сил F и F берутся со своими знаками. Технический результат заключается в повышении достоверности и точности результатов модельных испытаний судов ледового плавания. 3 ил.
Основные результаты: Способ проведения самоходных модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку на чистой воде прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями и проведение самоходных испытаний модели в ледовых условиях с последующим определением ледового сопротивления модели, отличающийся тем, что при проведении самоходных испытаний в ледовых условиях испытуемую модель также связывают с помощью динамометра с буксировочной тележкой бассейна, обеспечивающей движение модели с заданными скоростями, и при этом измеряют силу между моделью и буксировочной тележкой бассейна F, причем частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения, а аналогичные самоходные испытания в условиях чистой воды проводят по окончании указанного эксперимента в ледовых условиях и выполняют их в ледовом канале, оставшемся в бассейне после прохождения буксируемой модели в ледяном поле в ходе проведения упомянутых испытаний в ледовых условиях, который предварительно очищают от битого льда, причем проводят их при тех же значениях частоты вращения движителей модели и скорости ее движения и также измеряют силу между моделью и буксировочной тележкой F, и по результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели R, значение которой вычисляют в виде R=F+F, причем при суммировании значения сил F и F берутся со своими знаками.

Изобретение относится к области морского транспорта и способов проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах.

Известен способ проведения самоходных испытаний модели в ледовом опытовом бассейне, при использовании которого проводят испытания модели с работающими гребными винтами, связанной через динамометр с буксировочной тележкой. При проведении указанных испытаний измеряют силу между буксировочной тележкой и моделью, упор ее движителей и частоту их вращения. В случае движения модели кормой вперед с работающими винтами, уравнение сил, с помощью которого определяют ледовое сопротивление RI, выглядит следующим образом:

, (1)

где: Fmeas - сила, измеренная динамометром; t - коэффициент засасывания; - суммарный упор движителей (Рыжков А.В., Сазонов К.Е., Щербаков И.В. Методы определения ледового сопротивления на самоходных моделях. Доклады Всероссийской научно-технической конференции «Крыловские чтения - 2011», СПб., 2011, с. 120-122).

Недостатком указанного способа является необходимость измерения упоров движителей, а также проведение самоходных испытаний модели на чистой воде для определения коэффициента засасывания. Это существенно снижает точность получаемых экспериментальных данных, а также требует больших временных и финансовых затрат на проведение испытаний.

Известен также способ проведения самоходных модельных испытаний судов в ледовых условиях, разработанный финскими специалистами, принятый в качестве прототипа. По известному способу перед проведением ледовых испытаний проводят испытания прикрепленной к буксировочной тележке самоходной модели на чистой воде и определяют зависимость силы, регистрируемой на динамометре, от скорости движения модели и частоты вращения ее движителей. Затем проводят испытания в ледовых условиях, при которых используется уже свободно плавающая самоходная модель. В процессе этих испытаний измеряют скорость движения модели и частоту вращения движителей. По измеренной скорости движения модели и частоте вращения движителей с помощью ранее полученных на чистой воде данных определяют ледовое сопротивление модели (Клементьева Н.Ю., Сазонов К.Е., Тарица Г.В., Штрамбранд В.И., Щербаков И.В. Сопоставление результатов модельных исследований различных вариантов перспективного ледокола мощностью 25 МВт. Труды ЦНИИ им. акад. А.Н. Крылова, 2010, вып. 51(335), с. 207-218).

Недостатком указанного способа является необходимость измерения скорости движения модели, что является достаточно сложной технической задачей. Кроме того, скорость свободно плавающей модели в процессе эксперимента непостоянна, поэтому ее определение вносит существенную погрешность в полученные результаты при определении ледового сопротивления модели.

Другим недостатком указанного способа при проведении самоходных буксировочных испытаний модели судна в условиях чистой воды является то обстоятельство, что при движении модели имеет место волновая составляющая сопротивления воды движению судна, наличие которой приводит к недостоверным результатам определения силы взаимодействия между моделью и буксировочной тележкой, от которых зависит точность и достоверность определения чистого ледового сопротивления модели судна.

И наконец, при испытаниях модели с работающими гребными винтами или при движении задним ходом модели с носовыми движителями, работающими с произвольно выбранной частотой, имеет место несоответствие модельного режима обтекания корпуса модели струями от его работающих гребных винтов натурному режиму, что также негативно сказывается на точности и достоверности результатов определения ледового сопротивления судна.

Предлагаемое изобретение решает задачу повышения достоверности и точности результатов модельных испытаний моделей судов в ледовом опытовом бассейне и получения объективных экспериментальных данных по ледовому сопротивлению, необходимых для проектирования ледоколов и судов активного ледового плавания, в том числе путем создания условий проведения модельного эксперимента, подобных натурным.

Для этого по способу проведения модельных испытаний судов в ледовом опытовом бассейне, включающему буксировку на чистой воде прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями и проведение самоходных испытаний модели в ледовых условиях с последующим определением чистого ледового сопротивления модели, по изобретению при проведении самоходных испытаний в ледовых условиях испытуемую модель также связывают с помощью динамометра с буксировочной тележкой бассейна, обеспечивающей движение модели с заданными скоростями, и при этом измеряют силу между моделью и буксировочной тележкой бассейна FI, причем частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения. А аналогичные самоходные испытания в условиях чистой воды проводят по окончании указанного эксперимента в ледовых условиях и выполняют их в ледовом канале, оставшемся в бассейне после прохождения буксируемой модели в ледяном поле в ходе проведения упомянутых испытаний в ледовых условиях, который предварительно очищают от битого льда, причем проводят их при тех же значениях частоты вращения движителей модели и скорости ее движения и также измеряют силу между моделью и буксировочной тележкой FW. И по результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели RI, значение которой вычисляют в виде RI=FI+FW, причем при суммировании значения сил FI и FW берутся со своими знаками.

При проведении испытаний в ледовых условиях соединение самоходной модели с буксировочной тележкой с помощью динамометра необходимо для точного задания скорости движения модели. Измеряемая при таких испытаниях динамометром сила между испытательной тележкой и моделью FI дает информацию о том, насколько тяга движителей TE превосходит сумму ледового сопротивления RI и сопротивления воды RW или является недостаточной для преодоления этого суммарного сопротивления. Эта сила определяется выражением:

FI=RI+RW-TE, (1)

где RW - сопротивление воды движению модели, TE - тяга движительного комплекса модели.

Проведение буксировочных самоходных испытаний жестко прикрепленной к буксировочной тележке самоходной модели в ледовом канале, образовавшемся в ледовом поле бассейна после прохождения буксируемой модели судна, который предварительно очищают от битого льда, позволяет повысить точность определения силы на динамометре FW, т.к. при таких испытаниях (в канале) практически не возникает волновая составляющая сопротивления воды движению модели. В ходе этих испытаний определяется сила взаимодействия между моделью и буксировочной тележкой. Она задается формулой:

FW=TE-RW. (2)

Из формулы (1) следует, что ледовое сопротивление равно

RI=FI+TE-RW.

Тогда для определения ледового сопротивления получим окончательное выражение

RI=FI+FW,

причем при суммировании значения сил FI и FW берутся со своими знаками.

Выбор частоты вращения движителей из условия равенства расчетной тяги движительного комплекса на заданной скорости движения позволяет обеспечить натурные условия обтекания корпуса модели струями от движителей при движении модели преимущественно задним ходом или при испытаниях модели с носовыми гребными винтами. В соответствии с теорией гребных винтов скорость в струе движителя Vjet зависит от тяги комплекса:

, где ρ - плотность воды.

Таким образом, подбор частоты вращения, обеспечивающий заданную тягу движительного комплекса при заданной скорости движения, позволяет получить близкое к натурному обтекание корпуса струями от работающих гребных винтов.

Проведение самоходных модельных испытаний в ледовом опытовом бассейне по предлагаемому способу осуществляется по схеме, приведенной на фиг. 1, при испытаниях в ледовых условиях, и по схеме, приведенной на фиг. 2, при испытаниях в ледовом канале в условиях чистой воды, схема движения буксируемой самоходной модели по очищенному от обломков льда ледяному каналу приведена на фиг. 3.

При проведении обоих видов самоходных испытаний модель судна 1 жестко прикреплена к буксировочной тележке 2 с помощью динамометра 3 (фиг. 1, 2) и протаскивается ею через ледяное поле 4 (фиг. 1, 3) с силой FI, при этом у модели 1 работают движители 5, создавая тягу TE. В результате движения модель 1 испытывает сопротивление среды, которое состоит из силы ледового сопротивления RI и силы сопротивления воды RW. Частоту вращения движителей 5 при этом подбирают таким образом, чтобы она соответствовала расчетной тяге при заданной скорости движения модели 1. В процессе эксперимента измеряют динамометром силу FI между буксировочной тележкой 2 и движущейся моделью 1.

После проведения испытаний в ледовых условиях оставшийся после прохождения модели в ледяном поле 4 канал 6 (фиг. 3) очищают от битого льда. После чего проводят самоходные испытания буксируемой модели 1 с работающими движителями 5 (гребными винтами) в очищенном ледяном канале 6 уже в условиях чистой воды (фиг. 2). Причем эти испытания модели проводятся с частотами вращения работающих движителей, создающих тягу TE, и скоростью буксировки модели 1, совпадающими с аналогичными величинами, которые были использованы при испытаниях модели в ледовых условиях. При этом измеряется сила FW на динамометре 3. В процессе этих испытаниях модель испытывает только сопротивление воды RW.

По экспериментальным данным, полученным в ледовых испытаниях и испытаниях в ледяном канале в чистой воде, определяют чистое ледовое сопротивление модели по формуле: RI=FI+FW.

Предлагаемый способ проведения модельных испытаний судов в ледовом опытовом бассейне позволяет повысить достоверность и точность результатов модельных испытаний и обеспечивает получение объективных экспериментальных данных по ледовому сопротивлению, необходимых для проектирования ледоколов и судов активного ледового плавания, в том числе путем создания условий проведения модельного эксперимента, подобных натурным, что его выгодно отличает от прототипа.

Способ проведения самоходных модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку на чистой воде прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями и проведение самоходных испытаний модели в ледовых условиях с последующим определением ледового сопротивления модели, отличающийся тем, что при проведении самоходных испытаний в ледовых условиях испытуемую модель также связывают с помощью динамометра с буксировочной тележкой бассейна, обеспечивающей движение модели с заданными скоростями, и при этом измеряют силу между моделью и буксировочной тележкой бассейна F, причем частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения, а аналогичные самоходные испытания в условиях чистой воды проводят по окончании указанного эксперимента в ледовых условиях и выполняют их в ледовом канале, оставшемся в бассейне после прохождения буксируемой модели в ледяном поле в ходе проведения упомянутых испытаний в ледовых условиях, который предварительно очищают от битого льда, причем проводят их при тех же значениях частоты вращения движителей модели и скорости ее движения и также измеряют силу между моделью и буксировочной тележкой F, и по результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели R, значение которой вычисляют в виде R=F+F, причем при суммировании значения сил F и F берутся со своими знаками.
СПОСОБ ПРОВЕДЕНИЯ САМОХОДНЫХ МОДЕЛЬНЫХ ИСПЫТАНИЙ СУДОВ В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ПРОВЕДЕНИЯ САМОХОДНЫХ МОДЕЛЬНЫХ ИСПЫТАНИЙ СУДОВ В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 186.
09.05.2019
№219.017.4962

Синхронная электрическая машина с анизотропной магнитной проводимостью ротора

Изобретение относится к электротехнике и может быть использовано в качестве синхронного электрического генератора либо двигателя. Технический результат состоит в повышении энергетической эффективности и улучшение массогабаритных характеристик, а также в возможности изготовления ротора...
Тип: Изобретение
Номер охранного документа: 0002687080
Дата охранного документа: 07.05.2019
16.05.2019
№219.017.5229

Способ определения упругих и диссипативных характеристик композиционного материала

Настоящее изобретение относится к области измерения, в части определения физических свойств материалов, и может быть использовано преимущественно для определения упругих и диссипативных постоянных полимерных композиционных материалов (ПКМ) неразрушающим способом в любых отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002687503
Дата охранного документа: 14.05.2019
24.05.2019
№219.017.5e91

Локальный вибропоглотитель

Изобретение относится к области машиностроения. Локальный вибропоглотитель включает скрепленные между собой металлическую массу и резиновый слой между металлической массой и демпфируемой конструкцией. Металлическая масса выполнена в виде металлической пластины, имеющей толщину от 0,2 до 0,5...
Тип: Изобретение
Номер охранного документа: 0002688566
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.621f

Синхронная электрическая машина с анизотропной магнитной проводимостью ротора

Изобретение относится к области электротехники, в частности к реактивным синхронным электрическим машинам. Технический результат – повышение технологичности изготовления ротора, повышение эффективности работы машины. Синхронная электрическая машина с анизотропной магнитной проводимостью ротора...
Тип: Изобретение
Номер охранного документа: 0002689319
Дата охранного документа: 27.05.2019
04.06.2019
№219.017.72d3

Учебно-исследовательское газотопливное судно

Изобретение относится к области морской техники, а более конкретно - к морским научно-исследовательским газотопливным судам, предназначенным для проведения научных исследований в море и одновременно служащим базой для обучения на нем специалистов для экипажей газотопливных судов. Энергетическая...
Тип: Изобретение
Номер охранного документа: 0002690321
Дата охранного документа: 31.05.2019
07.06.2019
№219.017.74e1

Радиобуй подводного плавсредства подледный

Изобретение относится к области морской техники и предназначено для осуществления радиосвязи подводного плавсредства, находящегося подо льдом, с пунктом управления. Подледный радиобуй подводного плавсредства включает в себя плавучую емкость и противовес, источник тока, средства радиосвязи,...
Тип: Изобретение
Номер охранного документа: 0002690788
Дата охранного документа: 05.06.2019
05.07.2019
№219.017.a620

Судно на воздушной подушке с гибкими скегами

Изобретение относится к области судостроения, а более конкретно к созданию транспортных средств на воздушной подушке с гибкими скегами. Предложено судно на воздушной подушке с гибкими скегами, имеющее установленное вдоль бортов ограждение воздушной подушки, включающее расположенные побортно...
Тип: Изобретение
Номер охранного документа: 0002693493
Дата охранного документа: 03.07.2019
05.07.2019
№219.017.a638

Система управления электродвижительной установкой транспортного средства

Изобретение относится к системам управления электродвижительной установкой транспортного средства. Система управления электродвижительной установкой транспортного средства содержит структурную схему электродвигателя, состоящую из электрической части и механической части, контур управления...
Тип: Изобретение
Номер охранного документа: 0002693429
Дата охранного документа: 02.07.2019
06.07.2019
№219.017.a712

Электроэнергетическая установка судна с системой электродвижения

Изобретение относится к судостроению, а именно к электроэнергетическим установкам судов с системами электродвижения как гражданского, так и военно-морского флота. Электроэнергетическая установка судна с системой электродвижения содержит главный первичный тепловой двигатель, систему управления,...
Тип: Изобретение
Номер охранного документа: 0002693745
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.a97a

Преобразователь частоты

Изобретение относится к области электротехники и силовой электроники, в частности к статическим электрическим преобразователям энергии, построенным по схеме двухзвенных преобразователей частоты. Техническим результатом изобретения является повышение надежности и эффективности устройства при его...
Тип: Изобретение
Номер охранного документа: 0002693934
Дата охранного документа: 08.07.2019
Показаны записи 131-137 из 137.
08.12.2019
№219.017.eb93

Двухкорпусная спасательная шлюпка закрытого типа для эвакуации и спасания персонала и экипажа морских объектов в ледовых условиях

Изобретение относится к области судостроения и добычи полезных ископаемых на морском шельфе, касается вопроса обеспечения эвакуации и спасения персонала морских платформ и экипажей транспортных и технологических судов, работающих в арктических и дальневосточных замерзающих морях с...
Тип: Изобретение
Номер охранного документа: 0002708067
Дата охранного документа: 04.12.2019
24.12.2019
№219.017.f172

Устройство для очистки днищевых иллюминаторов глубоководного опытового бассейна от донных отложений

Изобретение относится к средствам механической чистки внутренней поверхности опытового бассейна от налета донных отложений. Предложено устройство для очистки днищевых иллюминаторов глубоководного опытового бассейна от донных отложений, включающее державку и укрепленный на ее конце скребок,...
Тип: Изобретение
Номер охранного документа: 0002709984
Дата охранного документа: 23.12.2019
06.02.2020
№220.017.ffe1

Вибропоглотитель

Изобретение относится к области машиностроения. Вибропоглотитель содержит скрепленные между собой металлическую массу в виде металлической пластины и упругий слой. Толщина металлической пластины составляет от 0,2 до 0,5 толщины демпфируемой конструкции. Длина металлической пластины определяется...
Тип: Изобретение
Номер охранного документа: 0002713264
Дата охранного документа: 04.02.2020
15.03.2020
№220.018.0c78

Теплообменный комплекс энергетической установки на сжиженном природном газе

Изобретение относится к области судовых энергетических установок, а более конкретно к теплообменным комплексам судовых энергетических установок, работающих на сжиженном природном газе, может быть использовано для систем регазификации и подготовки топливного газа, касается вопроса повышения...
Тип: Изобретение
Номер охранного документа: 0002716653
Дата охранного документа: 13.03.2020
23.05.2020
№220.018.2084

Гибкое ограждение судна на воздушной подушке с гибкими скегами

Изобретение относится к области судостроения, а более конкретно, к созданию транспортных средств на воздушной подушке с гибкими скегами. Предложено гибкое ограждение судна на воздушной подушке с гибкими скегами, включающее установленные вдоль бортов судна надувные скеги, состоящие из верхнего и...
Тип: Изобретение
Номер охранного документа: 0002721805
Дата охранного документа: 22.05.2020
15.07.2020
№220.018.32a2

Гребной вал с низкочастотным виброгашением

Изобретение относится к области борьбы с низкочастотными резонансными колебаниями гребного вала судна, вызывающими динамические усилия, действие которых на корпусные конструкции судна приводит к возникновению их интенсивной вибрации и шумоизлучения. Гребной вал содержит расположенные на нем по...
Тип: Изобретение
Номер охранного документа: 0002726368
Дата охранного документа: 13.07.2020
16.05.2023
№223.018.607a

Спусковое устройство спасательной шлюпки персонала морского сооружения

Изобретение относится к области судостроения и океанотехники и касается вопроса обеспечения эвакуации и спасения персонала морских объектов. Предложено спусковое устройство спасательной шлюпки персонала морского сооружения, содержащее установленную на его корпусной конструкции лебедку для...
Тип: Изобретение
Номер охранного документа: 0002740323
Дата охранного документа: 13.01.2021
+ добавить свой РИД