×
10.03.2014
216.012.a934

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к водному транспорту. Способ управления заключается в том, что текущее положение траектории сближения определяют в виде прямой линии, которая проходит через две заданные точки на плоскости, текущее положение которых на плоскости в любой заданный момент времени рассчитывают с использованием значений текущих координат носовой и кормовой точек судна-партнера, стоящего на якоре, заданного расстояния между бортами швартующихся судов, заданного положения швартующегося судна относительно судна-партнера, стоящего на якоре, в конечной стадии швартовки и текущего значения длины тормозного пути швартующегося судна, необходимого для перехода его от исходной скорости движения к скорости, равной скорости течения в районе места якорной стоянки судна-партнера в конкретных условиях плавания. Для обеспечения безопасности швартовной операции сближение выполняют в три этапа. На первом этапе сближения швартующееся судно выходит в первую условную точку, на втором этапе - во вторую условную точку, а на третьем этапе сближается с судном-партнером, стоящим на якоре, на расстояние, позволяющее крепить швартовные тросы. Повышается безопасность выполнения судном швартовной операции. 4 ил.
Основные результаты: 1. Способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу швартующегося судна А и судна-партнера A, другая - в корме швартующегося судна В и судна-партнера B относительно мидель-шпангоута соответствующего судна, координаты точек А, В, A, B в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), используя значения координат точек швартующегося судна А(X, Y), В(X, Y) и судна-партнера A(X, Y), B(X, Y) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(Х, Y), В(Х, Y) и судном-партнером A(X, Y), B(X, Y), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G (X, Y) и судна-партнера в связанной с ним подвижной координатной системе G(X, Y), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h и расстояние между центром тяжести швартующихся судов m рассчитывают:- координаты центра тяжести швартующегося судна G (X, Y) в неподвижной координатной системе;- координаты центра тяжести судна-партнера G(X, Y) в неподвижной координатной системе;- координаты точек A′(X, Y) и B′(X, Y), расположенных на перпендикулярах к диаметральной плоскости судна-партнера, восстановленных в точки A и B;- координаты проекции центра тяжести судна-партнера G′(X, Y) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно диаметральной плоскости судна-партнера через точки A' и B';- координаты второй заданной точки Р (X, Y) в неподвижной координатной системе;- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движенияdυ/dS=f(υ, C, С, С,…),где υ - текущее значение скорости швартующегося судна;S - путь;С, С, С,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции), отличающийся тем, что текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υ до υ=υ где υ - скорость течения в районе места якорной стоянки судна-партнера, при этом текущие значения параметров уравнения движения швартующегося судна С, С, С,… в процессе выполнения швартовной операции непрерывно идентифицируют;- координаты первой заданной точки P(X, Y) в неподвижной координатной системе;зная координаты первой заданной точки и координаты центра тяжести швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P(X, Y) и центр тяжести швартующегося судна G (X, Y), затем определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения;непрерывно определяемые значения координат точек А и В, A и B позволяют непрерывно вычислять координаты центра тяжести швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути S и первой заданной точки P, а также поперечные смещения d и dточек А и В швартующегося судна от текущего положения траектории сближения; возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:α=-k×d+k×d,где k, k - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения, швартующееся судно движется по линии GP в направлении точки P; моменту выхода швартующегося судна в первую заданную точку соответствует равенство координат центра тяжести швартующегося судна G(X, Y) и координат первой заданной точки P(X, Y) (X=X, Y=Y), оно переходит к сближению со второй заданной точкой Р, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'(X,Y) и B′(X,Y), координаты которых рассчитывают непрерывно; текущие координаты второй заданной точки Р(X, Y), лежащей на линии A′ B′, вычисляют непрерывно; определяемые непрерывно значения координат точек А и В, A и B позволяют непрерывно вычислять: координаты точек A′ и B′, центра тяжести G швартующегося судна и центра тяжести G судна-партнера, второй заданной точки Р в неподвижной координатной системе, а также поперечные смещения d и dточек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A′ B′, возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа и швартующееся судно движется в точку Р по линии A′B′;моменту выхода швартующегося судна во вторую заданную точку Рсоответствует равенство координат центра тяжести швартующегося судна и второй заданной точки, то есть X=Х, Y=Y;после выхода швартующегося судна в точку Р осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту», для этого заданное текущее положение траектории сближения швартующихся судов, т.е. линию A′B′, постепенно смещают параллельно диаметральной плоскости судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υ, скорость υ определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера; параллельное смещение линии A′B′ в сторону судна-партнера обусловлено смещением точек A′ и B′, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов, постепенное уменьшение значения h в соответствии с закономdh/dt=f(υ, h, h,…)приводит к изменению значения задаваемого расчетным способом расстояния между диаметральными плоскостями швартующихся судов h=h+0,5×(B+В), где B - ширина судна-партнера, В - ширина швартующегося судна, что, в свою очередь, изменяет координаты точек A′ и B′ и в конечном итоге линия A′B′ смещается в сторону судна-партнера, оставаясь параллельной его диаметральной плоскости; смещение линии A′B′ от исходного положения в сторону судна-партнера образует смещение d, d носовой А и кормовой В точек швартующегося судна соответственно, формируют сигнал управления α=-k×d+k×d, и диаметральную плоскость швартующегося судна приводят к новому положению линии A′B′ до их полного совпадения; далее процесс смещения линии A′B′ по указанному алгоритму в сторону судна-партнера повторяют многократно, при этом происходят многократные смещения носовой d и кормовой d точек швартующегося судна относительно текущего положения линии A′B′, смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A′B′ приводят к формированию управляющего сигнала средства управления швартующимся судном, в результате диаметральная плоскость швартующегося судна выходит на линию, совпадающую с текущим положением линии A′B′; смещение линии A′B′ в сторону судна-партнера осуществляют до тех пор, пока расстояние h между диаметральными плоскостями швартующихся судов не будет равно значению, определяемому из выражения h=0,5×(B+В), в этот момент расстояние между бортами швартующихся судов равно нулю h=0, что соответствует окончанию швартовной операции.

Изобретение относится к водному транспорту и касается управления швартующимся судном при выполнении им швартовной операции к борту судна, стоящего на якоре.

Известен способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера (Пат.РФ №2422326, опубл.27.06.2011), когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В (швартующееся судно), Bn(судно-партнер) (фиг.1, 2) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(Х, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(XA, YA), В(ХВ, YB) и судном-партнером An(XAn YAn), Bn(XBn, YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(Xg, Yg) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'ny,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n(X0G'n, Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, С1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1 С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υn, т.е.

где υн - начальная скорость швартующегося судна; υn - скорость судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ швартующегося судна G (X0G, Y0g). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G (X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1, Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n, YA'n) и B'n(XB'n, YB'n), координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки Р2(X0P2, Y0P2), лежащей на линии A'nB'n, вычисляют также непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируется сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будет приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера считается моментом окончания швартовной операции.

Однако в этом способе управления судном, выполняющим швартовную операцию к борту судна-партнера, есть определенный недостаток, не позволяющий безопасно сблизиться швартующемуся судну с судном-партнером, если оно стоит на якоре, т.к. движение судна, стоящего на якоре, относительно воды в продольном направлении либо отсутствует вообще, либо имеет значение, близкое к нулю, поэтому в момент выхода швартующегося судна к борту судна-партнера, стоящего на якоре, и при дальнейшем их сближении скорость швартующегося судна должна быть равна скорости течения υst в районе места якорной стоянки.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в соблюдении условия движения швартующегося судна в конечной стадии швартовки со скоростью, равной скорости течения υst в районе якорной стоянки судна-партнера.

Для достижения указанного технического результата в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера, когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В (швартующееся судно), Bn(судно-партнер) (фиг.1-4) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(X0A, Y0A)>В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(XA YA), В(XB, YB) и судном-партнером An(XAn, YAn), Bn(XBn,YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(XG,YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'n,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n{X0G'n, Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р20Р2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, C1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1, С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Отличительным признаком предлагаемого способа от указанного выше известного, наиболее близкого к нему, является следующий:

дополнительно текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υst, т.е.

где υst - скорость течения в районе места якорной стоянки судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1 С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ швартующегося судна G (X0G, Y0G). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kв - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки Р1 (фиг.2).

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G0Р1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2 (фиг.2), при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n,YA'n) и B'n(XB'n,YB'n), координаты которых рассчитываются непрерывно. Текущие координаты второй заданной точки Р2 (X0P2, Y0P2), лежащей на линии A'nB'n, вычисляются непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируют сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будет приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n в сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, считается моментом окончания швартовной операции.

Предлагаемый способ управления судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, осуществляется следующим образом.

В пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An(судно-партнер), другая - в корме В(швартующееся судно), Bn(судно-партнер) (фиг.1-4) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна А(X0A, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(ХА, Ya), В(Хв, YB) и судном-партнером An(XAn, YAn), Bn(XBn,YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G(XG,YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояние между ЦТ швартующихся судов m рассчитывают:

- координаты центра тяжести швартующегося судна G(X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A'n(XA'n,YA'n) и B'n(XB'n,YB'n), расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G'n(X0G'n>Y0G'n) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A'n и B'n;

- координаты второй заданной точки Р2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения

dυ/dS=f(υ, C1, С2, С3,…),

где υ - текущее значение скорости швартующегося судна;

S - путь;

С1, С2, С3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υst, т.е.

где υst - скорость течения в районе места якорной стоянки судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [2], [3];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ G швартующегося судна (X0G, Y0G). После этого определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять координаты ЦТ G швартующегося судна, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST и первой заданной точки P1, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kв - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'n(XA'n,YA'n) u B'n(XB'n,YB'n), координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки Р2(X0P2, Y0P2), лежащей на линии A'nB'n, вычисляют непрерывно.

Непрерывно определяемые значения координат точек А и В, An и Bn позволяют непрерывно вычислять: координаты точек A'n и B'n, ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A'nB'n.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A'nB'n.

Моменту выхода швартующегося судна во вторую заданную точку Р2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

После выхода швартующегося судна в точку Р2 осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту». С этой целью заданное текущее положение траектории сближения швартующихся судов, т.е. линия A'nB'n, постепенно смещается параллельно ДП судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υд. Скорость υд определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера. Параллельное смещение линии A'nB'n в сторону судна-партнера обусловлено смещением точек A'n и B'n, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов. Постепенное уменьшение значения h в соответствии с законом

dh/dt=f(υд, h, h0,…)

приводит к изменению значения задаваемого расчетным способом расстояния между ДП швартующихся судов h0=h+0,5×(Bn+В) (здесь Bn - ширина судна-партнера, В - ширина швартующегося судна), что, в свою очередь, изменяет координаты точек A'n и B'n и в конечном итоге линия A'nB'n смещается в сторону судна-партнера, оставаясь параллельной его ДП.

Смещение линии A'nB'n от исходного положения в сторону судна-партнера образует смещение dA, dB носовой А и кормовой В точек швартующегося судна соответственно. Формируется сигнал управления α=-kA×dA+kB×dB, и ДП швартующегося судна приводится к новому положению линии A'nB'n до их полного совпадения. Далее процесс смещения линии A'nB'n по указанному алгоритму в сторону судна-партнера будет повторяться многократно, также многократно будут образовываться смещения носовой dA и кормовой dB точек швартующегося судна относительно текущего положения линии A'nB'n. Смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A'nB'n будут приводить к формированию управляющего сигнала средства управления швартующимся судном. Работа средства управления вернет ДП швартующегося судна на линию, совпадающую с текущим положением линии A'nB'n.

Смещение линии A'nB'n в сторону судна-партнера будет происходить до тех пор, пока расстояние h0 между ДП швартующихся судов не будет равно значению, определяемому из выражения h0=0,5×(Bn+В), т.е. в этот момент расстояние между бортами швартующихся судов будет равно нулю h=0. Указанный момент в предлагаемом способе управления судном при выполнении им швартовной операции к борту судна-партнера считается моментом окончания швартовной операции.

В результате применения данного изобретения достигается возможность получения технического результата - соблюдение безопасности выполнения швартовной операции к борту судна-партнера, стоящего на якоре, таким образом, предлагаемый способ управления судном при выполнении им швартовной операции к борту судна-партнера соответствует критерию патентоспособности «промышленная применимость».

Список литературы

1. Пат. №2422326 Российская Федерация, опубл. 27.06.2011.

2. Юдин Ю.И. Синтез моделей механизма предвидения для экспертных систем, обеспечивающих безопасную эксплуатацию судна: монография/Ю.И.Юдин. - Мурманск: Изд-во МГТУ, 2007. -198 с: ил.

3. Юдин Ю. И. Теоретические основы безопасных способов маневрирования при выполнении точечной швартовки: монография / Ю.И.Юдин, С.В.Пашенцев, Г.И.Мартюк, А.Ю.Юдин. -Мурманск: Изд-во МГТУ, 2009. - 152 с.: ил.

1. Способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера, стоящего на якоре, когда в пределах контуров швартующегося судна и судна-партнера в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу швартующегося судна А и судна-партнера A, другая - в корме швартующегося судна В и судна-партнера B относительно мидель-шпангоута соответствующего судна, координаты точек А, В, A, B в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), используя значения координат точек швартующегося судна А(X, Y), В(X, Y) и судна-партнера A(X, Y), B(X, Y) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(Х, Y), В(Х, Y) и судном-партнером A(X, Y), B(X, Y), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G (X, Y) и судна-партнера в связанной с ним подвижной координатной системе G(X, Y), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h и расстояние между центром тяжести швартующихся судов m рассчитывают:- координаты центра тяжести швартующегося судна G (X, Y) в неподвижной координатной системе;- координаты центра тяжести судна-партнера G(X, Y) в неподвижной координатной системе;- координаты точек A′(X, Y) и B′(X, Y), расположенных на перпендикулярах к диаметральной плоскости судна-партнера, восстановленных в точки A и B;- координаты проекции центра тяжести судна-партнера G′(X, Y) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно диаметральной плоскости судна-партнера через точки A' и B';- координаты второй заданной точки Р (X, Y) в неподвижной координатной системе;- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движенияdυ/dS=f(υ, C, С, С,…),где υ - текущее значение скорости швартующегося судна;S - путь;С, С, С,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции), отличающийся тем, что текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υ до υ=υ где υ - скорость течения в районе места якорной стоянки судна-партнера, при этом текущие значения параметров уравнения движения швартующегося судна С, С, С,… в процессе выполнения швартовной операции непрерывно идентифицируют;- координаты первой заданной точки P(X, Y) в неподвижной координатной системе;зная координаты первой заданной точки и координаты центра тяжести швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P(X, Y) и центр тяжести швартующегося судна G (X, Y), затем определяют поперечные смещения точек А и В от найденной указанным способом траектории сближения;непрерывно определяемые значения координат точек А и В, A и B позволяют непрерывно вычислять координаты центра тяжести швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути S и первой заданной точки P, а также поперечные смещения d и dточек А и В швартующегося судна от текущего положения траектории сближения; возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:α=-k×d+k×d,где k, k - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения, швартующееся судно движется по линии GP в направлении точки P; моменту выхода швартующегося судна в первую заданную точку соответствует равенство координат центра тяжести швартующегося судна G(X, Y) и координат первой заданной точки P(X, Y) (X=X, Y=Y), оно переходит к сближению со второй заданной точкой Р, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A'(X,Y) и B′(X,Y), координаты которых рассчитывают непрерывно; текущие координаты второй заданной точки Р(X, Y), лежащей на линии A′ B′, вычисляют непрерывно; определяемые непрерывно значения координат точек А и В, A и B позволяют непрерывно вычислять: координаты точек A′ и B′, центра тяжести G швартующегося судна и центра тяжести G судна-партнера, второй заданной точки Р в неподвижной координатной системе, а также поперечные смещения d и dточек А и В швартующегося судна от текущего положения траектории сближения, которой является линия A′ B′, возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа и швартующееся судно движется в точку Р по линии A′B′;моменту выхода швартующегося судна во вторую заданную точку Рсоответствует равенство координат центра тяжести швартующегося судна и второй заданной точки, то есть X=Х, Y=Y;после выхода швартующегося судна в точку Р осуществляют дальнейшее сближение швартующихся судов до непосредственного контакта «борт к борту», для этого заданное текущее положение траектории сближения швартующихся судов, т.е. линию A′B′, постепенно смещают параллельно диаметральной плоскости судна-партнера в сторону судна-партнера со скоростью не больше допустимого значения скорости поперечного движения швартующегося судна в направлении судна-партнера υ, скорость υ определяют исходя из безопасности швартовной операции, а именно из условия безопасного гашения поперечной скорости движения швартующегося судна в момент непосредственного контакта швартующихся судов средствами кранцевой защиты борта судна-партнера; параллельное смещение линии A′B′ в сторону судна-партнера обусловлено смещением точек A′ и B′, текущее положение которых рассчитывают непрерывно в зависимости от значения расстояния h между бортами швартующихся судов, постепенное уменьшение значения h в соответствии с закономdh/dt=f(υ, h, h,…)приводит к изменению значения задаваемого расчетным способом расстояния между диаметральными плоскостями швартующихся судов h=h+0,5×(B+В), где B - ширина судна-партнера, В - ширина швартующегося судна, что, в свою очередь, изменяет координаты точек A′ и B′ и в конечном итоге линия A′B′ смещается в сторону судна-партнера, оставаясь параллельной его диаметральной плоскости; смещение линии A′B′ от исходного положения в сторону судна-партнера образует смещение d, d носовой А и кормовой В точек швартующегося судна соответственно, формируют сигнал управления α=-k×d+k×d, и диаметральную плоскость швартующегося судна приводят к новому положению линии A′B′ до их полного совпадения; далее процесс смещения линии A′B′ по указанному алгоритму в сторону судна-партнера повторяют многократно, при этом происходят многократные смещения носовой d и кормовой d точек швартующегося судна относительно текущего положения линии A′B′, смещения носовой А и кормовой точек В швартующегося судна относительно текущего положения линии A′B′ приводят к формированию управляющего сигнала средства управления швартующимся судном, в результате диаметральная плоскость швартующегося судна выходит на линию, совпадающую с текущим положением линии A′B′; смещение линии A′B′ в сторону судна-партнера осуществляют до тех пор, пока расстояние h между диаметральными плоскостями швартующихся судов не будет равно значению, определяемому из выражения h=0,5×(B+В), в этот момент расстояние между бортами швартующихся судов равно нулю h=0, что соответствует окончанию швартовной операции.
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
20.02.2013
№216.012.26a2

Способ управления судном при выполнении им швартовной операции к борту судна партнера

Изобретение относится к водному транспорту, в частности к управлению движением швартующегося судна при выполнении им швартовной операции к борту судна партнера. Сближение судов выполняют в три этапа, при этом на каждом этапе сближения используют свои заданные точки на плоскости. На первом этапе...
Тип: Изобретение
Номер охранного документа: 0002475410
Дата охранного документа: 20.02.2013
20.09.2013
№216.012.6b05

Способ определения гидродинамических параметров математической модели судна

Изобретение относится к области судовождения и может быть использовано для прогнозирования движения судна при маневрировании. Способ определения гидродинамических параметров математической модели судна включает использование математической модели движения судна, двух разнесенных по длине...
Тип: Изобретение
Номер охранного документа: 0002493048
Дата охранного документа: 20.09.2013
10.12.2013
№216.012.884a

Способ определения поперечной гидродинамической силы и ее момента при выполнении сложного маневрирования судна

Используют кормовую А и носовую F точки в диаметральной плоскости судна. В точки А и F устанавливают акселерометры и измеряют продольные и поперечные ускорения точек А и F. Определяют текущие значения составляющих линейных скоростей точек А и F. Рассчитывают абсциссу полюса поворота и...
Тип: Изобретение
Номер охранного документа: 0002500572
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a36

Способ управления траекторией движения судна

Изобретение относится к судовождению и может быть использовано для автоматизации управления траекторией движения любых типов судов, выполняющих сложное маневрирование, в частности, с большими углами дрейфа. Техническим результатом является повышение эффективности использования средств...
Тип: Изобретение
Номер охранного документа: 0002501064
Дата охранного документа: 10.12.2013
20.02.2014
№216.012.a1b3

Способ определения демпфирующих составляющих нормальной гидродинамической силы и момента

Изобретение относится к водному транспорту и может быть использовано при управлении траекторией движения судна, выполняющего сложное маневрирование. Способ определения демпфирующих составляющих нормальной гидродинамической силы и момента включает определение текущего значения абсциссы центра...
Тип: Изобретение
Номер охранного документа: 0002507110
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a932

Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе

Изобретение относится к водному транспорту и касается управления движением швартующегося судна при выполнении им швартовной операции к судну-партнеру, лежащему в дрейфе. Текущее положение траектории сближения определяют в виде прямой линии, проходящей через две заданные точки на плоскости....
Тип: Изобретение
Номер охранного документа: 0002509029
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a933

Способ управления движущимся судном

Изобретение относится к управлению движущимся судном при его позиционировании в заданной точке плоскости в заданном направлении. Используют поперечные смещения двух разнесенных по длине объекта точек и продольные отклонения условной точки. Условная точка расположена в диаметральной плоскости...
Тип: Изобретение
Номер охранного документа: 0002509030
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a935

Способ определения поперечной гидродинамической силы, образующейся на корпусе судна при выполнении сложного маневрирования

Изобретение относится к управлению траекторией движения судна, выполняющего сложное маневрирование при швартовке, динамическом позиционировании или дрейфе. Способ характеризуется тем, что перед выполнением сложного маневрирования судно выполняет вращение под воздействием средств активного...
Тип: Изобретение
Номер охранного документа: 0002509032
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abbc

Способ управления движением судна по заданной траектории

Изобретение относится к управлению судном при следовании по заданной траектории и касается автоматического управления рулём или другим рулевым средством управления, которым оборудовано судно. Управление осуществляют по величинам поперечных смещений носовой А и кормовой В точек. Точки А и В...
Тип: Изобретение
Номер охранного документа: 0002509679
Дата охранного документа: 20.03.2014
20.06.2015
№216.013.5640

Способ управления движущимся судном

Способ управления движущимся судном. При данном способе в пределах контура судна в его диаметральной плоскости (ДП) выбирают на носу и корме судна точки, относительно которых производят непрерывные измерения координат с высокой точностью (±1м) и непрерывно вычисляют смещения этих точек от...
Тип: Изобретение
Номер охранного документа: 0002553610
Дата охранного документа: 20.06.2015
Показаны записи 1-10 из 18.
20.02.2013
№216.012.26a2

Способ управления судном при выполнении им швартовной операции к борту судна партнера

Изобретение относится к водному транспорту, в частности к управлению движением швартующегося судна при выполнении им швартовной операции к борту судна партнера. Сближение судов выполняют в три этапа, при этом на каждом этапе сближения используют свои заданные точки на плоскости. На первом этапе...
Тип: Изобретение
Номер охранного документа: 0002475410
Дата охранного документа: 20.02.2013
10.04.2013
№216.012.3335

Электрохимический способ очистки хондроитина сульфата

Изобретение относится к способу очистки хондроитина сульфата и может быть использовано в пищевой и косметической промышленности и медицине. Способ предусматривает электрохимическое осаждение с получением гидрогеля хондроитина сульфата, стабилизацию, снятие с электрода, промывание и сушку. При...
Тип: Изобретение
Номер охранного документа: 0002478652
Дата охранного документа: 10.04.2013
10.06.2013
№216.012.491b

Вантовая ветроэнергетическая установка

Изобретение относится к ветряным двигателям и расширяет парк ветроэнергетических установок с вертикальной осью вращения. Вантовая ветроэнергетическая установка содержит как минимум один ветрогенератор и электрогенератор, установленные на устройстве подвеса, нижний конец которого закреплен к...
Тип: Изобретение
Номер охранного документа: 0002484295
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.49e2

Способ определения местоположения объекта

Изобретение относится к области радионавигации с использованием радиоволн и может быть использовано в транспортной навигации для определения местоположения объекта в условиях высоких широт и при наличии полярных сияний. Изобретение может быть также использовано для освоения природных ископаемых...
Тип: Изобретение
Номер охранного документа: 0002484494
Дата охранного документа: 10.06.2013
20.09.2013
№216.012.6b05

Способ определения гидродинамических параметров математической модели судна

Изобретение относится к области судовождения и может быть использовано для прогнозирования движения судна при маневрировании. Способ определения гидродинамических параметров математической модели судна включает использование математической модели движения судна, двух разнесенных по длине...
Тип: Изобретение
Номер охранного документа: 0002493048
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.74df

Способ получения консервов из рыбы полугорячего копчения

Изобретение относится к пищевой промышленности. Способ предусматривает подготовку сырья, подсушку, копчение, фасование в банки, закатывание и стерилизацию. Подсушку и копчение проводят при одинаковой и постоянной жесткости режима. Жесткость режима определяется формулой , где - средняя...
Тип: Изобретение
Номер охранного документа: 0002495579
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.884a

Способ определения поперечной гидродинамической силы и ее момента при выполнении сложного маневрирования судна

Используют кормовую А и носовую F точки в диаметральной плоскости судна. В точки А и F устанавливают акселерометры и измеряют продольные и поперечные ускорения точек А и F. Определяют текущие значения составляющих линейных скоростей точек А и F. Рассчитывают абсциссу полюса поворота и...
Тип: Изобретение
Номер охранного документа: 0002500572
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a36

Способ управления траекторией движения судна

Изобретение относится к судовождению и может быть использовано для автоматизации управления траекторией движения любых типов судов, выполняющих сложное маневрирование, в частности, с большими углами дрейфа. Техническим результатом является повышение эффективности использования средств...
Тип: Изобретение
Номер охранного документа: 0002501064
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.9495

Способ извлечения никеля

Изобретение относится к способу извлечения никеля из его растворов цементацией. Способ включает цементацию никеля путем пропускания раствора соли никеля через порошок восстановленного железа. Пропускание раствора ведут со скоростью 0,5-1,0 мл/мин. При этом реакционную смесь подвергают...
Тип: Изобретение
Номер охранного документа: 0002503731
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.95f0

Способ квазитрансавроральной радиосвязи в дкмв-диапазоне

Изобретение относится к области техники радиосвязи и может быть использовано для связи в ДКМВ диапазоне в высоких широтах. Технический результат состоит в увеличении времени связи в ДКМВ диапазоне на высокоширотных радиотрассах за счет использования аномального механизма распространения...
Тип: Изобретение
Номер охранного документа: 0002504078
Дата охранного документа: 10.01.2014
+ добавить свой РИД