×
27.11.2015
216.013.9429

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК С УПРАВЛЯЕМОЙ ПОВЕРХНОСТНОЙ ПЛОТНОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.
Основные результаты: Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.

Изобретение относится к каталитическому способу производства углеродных нанотрубок из углеводородов, предназначено для выращивания массивов углеродных нанотрубок. Оно может быть использовано в производстве сорбентов, армирующих добавок и др.

Известен способ получения углеродных нанотрубок термокаталитическим разложением ацетилена с участием нанодисперсных частиц железа и никеля, размещенных на поверхности подложек монокристаллического кремния [1]. Недостатком данного способа является невозможность получения углеродных нанотрубок, а также большой разброс их по диаметрам и неравномерность распределения по площади подложки.

Известен способ получения углеродных нанотрубок каталитическим разложением ацетилена с осаждением углерода на заполненные кобальтом мезопористые подложки из анодированного оксида алюминия [2]. Недостатками способа являются достаточно большой разброс получаемых нанотрубок по диаметрам, относительно низкая равномерность распределения трубок по площади подложки, недостаточная воспроизводимость процесса на отдельных участках подложки.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ нанесения антикоррозионных покрытий на защищаемые поверхности металлов путем плазменного напыления, вакуумного испарения или осаждения из газовой фазы с одновременным ультразвуковым воздействием на металл [3]. Недостатком данного способа является то, что ультразвуковое воздействие на металл при нанесении антикоррозионных покрытий на защищаемую поверхность приводит к неконтролируемому заполнению неровностей поверхности, пор, трещин, что обуславливает неравномерное распределение наносимого материала по поверхности. Неравномерность нанесения защитного покрытия определяется использованием ультразвукового воздействия в интервале частот, соответствующих частотам собственных колебаний метала и приводящих к возникновению резонанса. Данный способ не позволяет управляемо наносить наночастицы металлов на поверхность ростовой подложки без заполнения трещин, неровностей, не сплошным слоем. Использование данного способа для получения массивов углеродных нанотрубок невозможно.

Изобретение направлено на получение на поверхности ростовой подложки массивов углеродных нанотрубок.

Это достигается тем, что перед помещением ростовой подложки в печь и выращиванием массивов углеродных нанотрубок на подложку наносят катализатор путем конденсации микрокапель коллоидного раствора при воздействии на него ультразвука, при этом ультразвуком дополнительно воздействуют на ростовую подложку во время проведения процесса конденсации, причем мощность ультразвукового генератора задается в пределах от 25 до 40 Вт.

Способ получения массивов углеродных нанотрубок осуществляется следующим способом. Ростовая подложка с предварительно очищенной подготовленной поверхностью закрепляется над свободной поверхностью коллоидного раствора, состоящего из наночастиц катализатора и жидкого растворителя, причем тип растворителя и катализатора, а также их количественное соотношение в растворе устанавливается заранее, с учетом поставленной задачи. Под воздействием УЗ над поверхностью коллоидного раствора образуется пар, в микрокаплях которого содержатся наночастицы катализатора. Попадая в более холодную зону над подложкой, пар конденсируется на поверхности ростовой подложки в виде микрокапель. Во время проведения процесса конденсации ростовая подложка дополнительно подвергается воздействию УЗ с мощностью ультразвукового генератора в заданных пределах. Затем ростовая подложка помещается в печь, нагревается до температуры выращивания углеродных нанотрубок и производится выращивание углеродных нанотрубок.

Применение ультразвукового воздействия на ростовую подложку во время проведения процесса конденсации определяется тем, что в конденсирующихся на поверхности ростовой подложки микрокаплях коллоидного раствора, происходят непрерывные процессы коагуляции и седиментации каталитических наночастиц, а воздействие УЗ на ростовую подложку минимизирует негативные последствия, связанные с протеканием данных процессов. Т.е. воздействие УЗ на ростовую подложку позволяет размещать на ее поверхности каталитические наночастицы с максимальной равномерностью за счет поддержания равномерного распределения наночастиц в объеме осажденных микрокапель на всем протяжении процесса, вплоть до полного испарения растворителя.

Мощность У3-генератора, задаваемая в пределах от 25 до 40 Вт, определяется тем, что в данном интервале, варьируя конкретную величину мощности ультразвукового генератора, можно управлять процессом нанесения каталитических наночастиц. При более низких чем 25 Вт значениях мощности на поверхности ростовой подложки образуются скопления каталитических наночастиц в виде комков и участки с различной плотностью расположения наночастиц, т.е. однородность в распределении каталитических наночастиц на поверхности ростовой подложки нарушается, и получить необходимую поверхностную плотность расположения частиц на подложке не удается. При большем чем 40 Вт значении мощности происходит отрыв значительной части каталитических наночастиц от поверхности ростовой подложки и, как следствие, процесс управляемого нанесения наночастиц становится невозможным.

Использование предлагаемого способа позволяет получать массивы углеродных нанотрубок с управляемой поверхностной плотностью.

Примеры осуществления способа

Пример 1

В качестве ростовой подложки применялись пластины монокристаллического кремния ориентации {111} типа ЭКБД. В качестве источника наночастиц металла-катализатора использовался нанопорошок никеля чистотой 99,99% со средними диаметрами отдельных частиц от 20 до 80 нм.

Для обработки коллоидного раствора ультразвуком использовалась ультразвуковая ванна типа «ULTRASONIC CLEANER CT-400D». В качестве растворителя применялась дистиллированная вода.

Нанесение нанодисперсных частиц металла-катализатора на ростовую подложку осуществлялось следующим образом. Ростовую подложку с отмытой и обезжиренной поверхностью закрепляли над ванной с коллоидным раствором необходимой концентрации. Затем коллоидный раствор подвергали воздействию УЗ в течение 60 с при мощности генератора в 30 Вт. Мощность УЗ генератора, оказывающего воздействие на ростовую подложку во время проведения процесса конденсации, устанавливали на уровне 25 Вт. Затем подложки помещались в сушильный шкаф до полного удаления жидкости. Далее подготовленные подложки помещались в ростовую печь, в реакционную зону подавали газообразный ацетилен С2Н2 и выращивали УНТ. Время выращивания составляло от 10 до 15 минут, в зависимости от необходимой длины углеродных нанотрубок. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 1,21×10 мм-2. Полученные нанотрубки имели диаметр 80±1 нм и длину от ~800 нм до~3 мкм.

Пример 2

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 30 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 4,41×106 мм-2. Полученные нанотрубки имели диаметр 60±1 нм и длину от ~500 нм до ~3 мкм.

Пример 3

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 40 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 2,21×107 мм-2. Полученные нанотрубки имели диаметр 30±1 нм и длину от ~250 нм до ~1 мкм.

Источники информации

1. Патент РФ №2301821 «Способ получения углеродных нановолокон», МПК6 С09С 1/44, В82В 3/00, С01В 31/00 / Пешнев Б.В., Николаев А.И.

2. Suh J. S., Lee J. S. Highly ordered two-dimensional carbon nanotube arrays // Appl. Phys. Lett. 1999. V.75. P. 2047.

3. Патент РФ N 2026887 «Способ нанесения антикоррозионных покрытий», кл. С23С 4/00, С23С 14/00, С23С 16/00, 1995 / Бакулин В.Н., Бакулин А.В.

Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.
Источник поступления информации: Роспатент

Показаны записи 121-130 из 245.
27.08.2015
№216.013.73d4

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. Устройство ориентации гелиоустановки дополнительно снабжено...
Тип: Изобретение
Номер охранного документа: 0002561227
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74de

Муфта кривошипно-шатунного пресса

Изобретение относится к машиностроению, в частности к приводу фрикционных муфт кривошипно-шатунных прессов, преимущественно с дисковой рабочей поверхностью. Муфта кривошипно-шатунного пресса содержит опорный и ведомый диски, привод перемещения нажимного диска, который выполнен в виде модулей,...
Тип: Изобретение
Номер охранного документа: 0002561493
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74f2

Испаритель криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель. Корпус выполнен в виде как...
Тип: Изобретение
Номер охранного документа: 0002561513
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7515

Вращающаяся установка с вспомогательным приводом для тепловой обработки сыпучего материала

Изобретение относится к установке для термообработки сыпучего материала, в частности строительных материалов. Установка содержит два наклонно установленных барабана с загрузочным и разгрузочным участками, вращающихся независимо друг от друга, и камеру- коллектор, расположенную соосно между ними...
Тип: Изобретение
Номер охранного документа: 0002561548
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7657

Система комплексного управления движением транспорта

Изобретение относится к управлению движением транспорта, а именно к системам комплексного управления движением транспорта. Система включает в себя центральный компьютер, каналы связи с передатчиком и приемником, устройства сбора информации, централизованное устройство управления светофорами,...
Тип: Изобретение
Номер охранного документа: 0002561884
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7659

Устройство увеличения подъемной силы самолета короткого взлета и посадки

Изобретение относится к авиационной технике и касается средств увеличения подъемной силы самолетов короткого взлета и посадки. Устройство увеличения подъемной силы содержит поворотную силовую установку с винтами, привод поворота, автоматы демпфирования нагрузок, замки фиксации, топливную...
Тип: Изобретение
Номер охранного документа: 0002561886
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76d0

Крыло самолета короткого взлета и посадки

Изобретение относится к авиационной технике и касается несущих систем самолетов короткого взлета и посадки. Крыло самолета короткого взлета и посадки содержит установленные в верхней части жесткие сдвижные панели, щелевые закрылки с каретками и опорными роликами, направляющие рельсы перемещения...
Тип: Изобретение
Номер охранного документа: 0002562005
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8df9

Способ очистки воздуха

Изобретение относится к процессам пылеулавливания. Способ очистки воздуха заключается в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002567952
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8dfd

Разнотемпературная конденсационная камера

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, содержащая нижнее днище, верхнее днище, холодную и горячую боковые стенки тракта с устройствами обеспечения разности температур их...
Тип: Изобретение
Номер охранного документа: 0002567956
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f00

Способ получения массивов наноразмерных нитевидных кристаллов кремния с управляемой поверхностной плотностью

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель...
Тип: Изобретение
Номер охранного документа: 0002568217
Дата охранного документа: 10.11.2015
Показаны записи 121-130 из 289.
10.03.2015
№216.013.2f48

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002543572
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.311f

Способ изготовления сотовой конструкции

Изобретение относится к области изготовления многослойных панелей и может быть использовано в производстве конструкции противотурбулентного устройства (ПТУ) и касается способа изготовления сотовой конструкции. Состоит из сотопакетов, соединенных с ребрами жесткости каркаса и между собой....
Тип: Изобретение
Номер охранного документа: 0002544043
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3b1d

Аналого-цифровой преобразователь в системе остаточных классов

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в системе остаточных классов (СОК). Технический результат - упрощение конструкции....
Тип: Изобретение
Номер охранного документа: 0002546621
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c58

Способ обработки сопрягаемых поверхностей запорного устройства и устройство для его осуществления

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств, например, для нефтегазовых магистралей. Способ обработки сопрягаемых поверхностей запорного устройства, выполненного в виде расположенного между щеками шибера, включает обработку шибера...
Тип: Изобретение
Номер охранного документа: 0002546936
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c96

Способ сравнительных испытаний по надежности партий интегральных схем

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых интегральных схем (ИС). Сущность: из партий ИС методом случайной выборки отбирают одинаковое количество изделий (не менее 10 от каждой партии) и измеряют значение информативного...
Тип: Изобретение
Номер охранного документа: 0002546998
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cf0

Способ обработки нанокомпозитов в водородной плазме

Изобретение относится к вакуумно-плазменной обработке композитов. При обработке нанокомпозитов в водородной плазме используют установку, содержащую СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из...
Тип: Изобретение
Номер охранного документа: 0002547088
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d80

Устройство для контроля эвм

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления. Техническим результатом является уменьшение количества используемого оборудования за счет использования блоков сложения...
Тип: Изобретение
Номер охранного документа: 0002547232
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4331

Вертикальный ротор

Изобретение относится к области энергетики и может быть использовано в ветроэлектрогенераторах с вертикальной осью вращения. Вертикальный ротор содержит вертикальный вал, активные лопасти, соединенные гибкими связями с валом. Места крепления лопастей соединяются между собой дополнительными...
Тип: Изобретение
Номер охранного документа: 0002548699
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45f5

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного воздушного потока, несколько...
Тип: Изобретение
Номер охранного документа: 0002549413
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45f6

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для установки для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002549414
Дата охранного документа: 27.04.2015
+ добавить свой РИД