×
23.04.2023
223.018.5207

Результат интеллектуальной деятельности: Ионоселективный материал для определения ионов калия

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для прямого потенциометрического определения концентрации ионов калия в водных растворах и может быть использовано для анализа природных и сточных вод, биологических жидкостей. Ионоселективный материал для определения ионов калия содержит диоксид молибдена и углерод при следующем соотношении компонентов, мас.%: диоксид молибдена MoO 83-66; углерод 7-34. Структура материала представляет собой матрицу из углерода, в которой распределены частицы диоксида молибдена MoOразмером 10-12 нм. Изобретение позволяет получить ионоселективный материал, обладающий возможностью определения концентрации К в водных растворах в широком интервале концентраций определяемого иона и высоким угловым коэффициентом электродной функции. 4 ил., 4 пр.

Изобретение относится к области ионометрии, в частности к материалам, предназначенным для использования в качестве чувствительного ионоселективного материала твердофазных ионоселективных электродов для количественного определения концентрации ионов калия в водных растворах. Предлагаемое изобретение предназначено для прямого потенциометрического определения концентрации ионов калия в водных растворах и может быть использовано для анализа природных и сточных вод, а также для анализа биологических жидкостей.

Известен ионоселективный материал для определения ионов калия на основе монокристалла калий титанил фосфата KTiOPO4 толщиной 0.5-3 мм и диаметром 2-10 мм. Известный ионоселективный материал обладает угловой электродной функцией близкой к теоретической (59±0.5 мВ), при этом предел определения ионов калия в водном растворе составляет 2·10-5 М в интервале значений рН 2.5-11.5. (Патент CN1123913, МПК G01N27/30, 1996 год).

Недостатком известного материала является узкий предел обнаружения ионов калия в водных растворах.

Наиболее близким к заявленному является ионоселективный материал, содержащий микросферы диоксида молибдена MoO2, обладающего смешанным ионно-электронным типом проводимости, и ионофор валиномицин C54H90N6O18, который входит в группу естественных нейтральных ионофоров и обладает высокой селективностью в отношении ионов калия. Известный ионоселективный материал обладает линейным диапазоном измеряемых концентраций в диапазоне 10-6-10-2 М. Угловой коэффициент электродной характеристики составляет 55 мВ. (Appl. CN107991364, МПК G01N27/333, 2018 год). (прототип).

Недостатком известного ионоселективного материала является низкий угловой коэффициент электродной характеристики, также к недостаткам относится использование биологически токсичного ионофора, нарушающего метаболизм и функционирование микроорганизмов, что экологически небезопасно.

Таким образом, перед авторами стояла задача разработать ионоселективный материал для определения ионов калия в растворе, обладающий наряду с возможностью определения концентрации К+ в водных растворах в широком интервале концентраций определяемого иона высоким угловым коэффициентом электродной функции близким к теоретическому.

Поставленная задача решена в предлагаемом ионоселективном материале для определения ионов калия, содержащем диоксид молибдена и углеродсодержащий материал, который в качестве углеродсодержащего материала содержит углерод при следующем соотношении компонентов, мас.%: диоксид молибдена MoO2 - 83÷66; углерод - 17÷34, причем структура материала представляет собой матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2 размером 10 - 12 нм.

В настоящее время из патентной и научно-технической литературы не известен ионоселективный материал для определения ионов калия в водных растворах, содержащий диоксид молибдена и углерод в предлагаемых пределах содержания компонентов со структурой материала, представляющей матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2.

Предлагаемый материал может быть получен следующим образом. Готовят раствор порошка металлического молибдена в водном растворе пероксида водорода, добавляют к полученному раствору глюкозу C6H12O6, вводимую в молярном соотношении молибден : глюкоза = 1:0.75÷2.5, осуществляют гидротермальную обработку при температуре 160–180 ºС и избыточном давлении 617–889 кПа в течение 18-24 ч, затем промывают полученный материал водой, сушат и отжигают в инертной атмосфере при температуре 490-550 ºС в течение 0.5-2 ч. Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА), просвечивающей электронной микроскопии (ПЭМ) и КР-спектроскопии. Содержание углерода в композите определяют термогравиметрическим методом. Исследование ионоселективной функции ионоселективного материала проводят с использованием иономера И-130.2М путем измерения ЭДС гальванического элемента типа

электрод | исследуемый раствор || KCl нас., AgCl |Ag.

Рабочие растворы концентрацией 1·10-6–10-1 М готовят растворением хлорида калия KCl в воде. Калиевую функцию электродов изучают в растворах с постоянной ионной силой µ = 0.01, чтобы исключить влияние посторонних ионов на его значение. Для определения коэффициентов потенциометрической селективности использовали метод непрерывных растворов (Окунев М.С., Хитрова Н.В., Корниенко О.И. Оценка селективности ионоселективных электродов // Журн. аналит. химии. 1982. Т. 37. № 1 С. 5-13).

Предлагаемый материал позволяет определять концентрацию ионов К+ в водных растворах в интервале концентраций 10-1 ÷ 10-6 М при кислотности среды 4.5 < pH < 7, при этом значение углового коэффициента электродной функции близко к теоретическому (59±0.5 мВ).

На фиг. 1 представлено изображение ионоселективного материала, полученное на просвечивающем электронном микроскопе высокого разрешения.

На фиг. 2 представлена рентгенограмма порошка ионоселективного материала.

На фиг. 3 представлен КР спектр порошка ионоселективного материала.

На фиг. 4 представлена зависимость потенциала от концентрации ионов калия K+ в растворе.

Исследования, проведенные авторами, позволили сделать вывод, что предлагаемый материал обладает свойством катионной функции, которое позволяет использовать его в качестве ионоселективного материала для определения ионов калия в растворе. Предпосылками возникновения катионной функции являются кристаллографические особенности структуры диоксида молибдена, его подвижная слоистая структура, обеспечивающая легкость процесса интеркаляции/деинтеркаляции катионов калия. Дополнительно, углерод, являющийся проводником металлического типа и входящий в состав композита, обеспечивает высокую электропроводность системы за счет образования проводящей сетки сопряженных связей.

Авторами экспериментальным путем было установлено, что существенным фактором, определяющим состав и структуру конечного продукта, а также содержание в нем углеродной компоненты, является соотношение его компонентов. Так, при содержании диоксида молибдена MoO2 более 83 мас.%; а углерода менее 17 мас.% в конечном продукте наблюдается в качестве примеси триоксид молибдена MoO3. При содержании диоксида молибдена MoO2 менее 66 мас.%; а углерода более 34 мас.% в конечном продукте дополнительно с основной фазой образуются оксиды молибдена с переменной валентностью, так называемые фазы Магнели, общей формулы MonO2n-1.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. Берут 0.4797 г порошка молибдена Mo и растворяют его в 30 мл 30 %-ного раствора пероксида водорода H2O2. К полученному раствору при перемешивании добавляют 0.675 г глюкозы C6H12O6, взятой в молярном соотношении молибден : глюкоза = 1 : 0.75. Перемешивание ведут до полного растворения глюкозы. Затем полученный раствор подвергают гидротермальной обработке при температуре 160 °С и избыточном давлении 617 кПа в течение 24 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50 °С. Затем гомогенную смесь помещают в печь, нагревают в токе азота до 490 °С и выдерживают 2 ч. По данным ПЭМ структура полученного материала представляет собой матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2 размером 10 - 12 нм (фиг. 1). По данным РФА полученный порошок является композитом состава, мас.%: 83 - MoO2; 17 - C; на основе моноклинной структуры диоксида молибдена MoO2 с параметрами элементарной ячейки a = 5.622 Å, b = 4.820 Å, c = 5.590 Å и β = 120.12° (фиг. 2). Наличие свободного углерода в композите подтверждается КР-спектроскопией (фиг. 3). На КР-спектре наблюдается G – полоса (graphitic) с частотой 1593 см-1, характеризующая колебания графитоподобной системы sp2 – углеродных связей, и D- полоса (disordered) с частотой 1373 см-1, описывающая разупорядоченный углерод в sp3–состоянии. На фиг. 4 представлена зависимость потенциала электрода от концентрации ионов калия K+ в растворе при рН = 6. В интервале концентраций 10-1÷10-6 М угловой коэффициент электродной функции близок к теоретическому значению и равен 59 ± 0.5 мВ. Получены следующие значения коэффициентов селективности калийселективного материала 1.7·10-4, 8·10-4, 1.4·10-4, 1.5·10-4, 1.3·10-3, 2.8·10-3, 3.2·10-3 для мешающих катионов Na+, Rb+, Cs+, Mg2+, Ca2+, Ni2+, Co2+, соответственно.

Пример 2. Берут 0.4797 г порошка молибдена Mo и растворяют его в 30 мл 30 %-ного раствора пероксида водорода H2O2. К полученному раствору при перемешивании добавляют 0.9 г глюкозы C6H12O6, взятой в молярном соотношении молибден : глюкоза = 1 : 1. Перемешивание ведут до полного растворения глюкозы. Затем полученный раствор подвергают гидротермальной обработке при температуре 180 °С и избыточном давлении 889 кПа в течение 24 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50 °С. Затем гомогенную смесь помещают печь, нагревают в токе азота до 550 °С и выдерживают 0.5 ч. По данным ПЭМ и РФА полученный порошок является композитом состава, мас.%: 76 - MoO2; 24 – C; на основе моноклинной структуры диоксида молибдена MoO2 с параметрами элементарной ячейки a = 5.622 Å, b = 4.820 Å, c = 5.590 Å и β = 120.12° и представляет собой матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2 размером 10 - 12 нм. При рН 4.5 в интервале концентраций 10-1÷10-6 М угловой коэффициент электродной функции близок к теоретическому значению и равен 59 ± 0.5 мВ.

Пример 3. Пример 2. Берут 0.4797 г порошка молибдена Mo и растворяют его в 30 мл 30 %-ного раствора пероксида водорода H2O2. К полученному раствору при перемешивании добавляют 1.8 г глюкозы C6H12O6, взятой в молярном соотношении молибден : глюкоза = 1 : 2. Перемешивание ведут до полного растворения глюкозы. Затем полученный раствор подвергают гидротермальной обработке при температуре 180 °С и избыточном давлении 889 кПа в течение 20 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50 °С. Затем гомогенную смесь помещают печь, нагревают в токе азота до 500 °С и выдерживают 1 ч. По данным ПЭМ и РФА полученный порошок является композитом состава, мас.%: 70 - MoO2; 30 – C; на основе моноклинной структуры диоксида молибдена MoO2 с параметрами элементарной ячейки a = 5.622 Å, b = 4.820 Å, c = 5.590 Å и β = 120.12° и представляет собой матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2 размером 10 - 12 нм. При рН 7 в интервале концентраций 10-1÷10-6 М угловой коэффициент электродной функции близок к теоретическому значению и равен 59 ± 0.5 мВ.

Пример 4. Пример 2. Берут 0.4797 г порошка молибдена Mo и растворяют его в 30 мл 30 %-ного раствора пероксида водорода H2O2. К полученному раствору при перемешивании добавляют 2.25 г глюкозы C6H12O6, взятой в молярном соотношении молибден : глюкоза = 1 : 2.5. Перемешивание ведут до полного растворения глюкозы. Затем полученный раствор подвергают гидротермальной обработке при температуре 180 °С и избыточном давлении 889 кПа в течение 18 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50 °С. Затем гомогенную смесь помещают печь, нагревают в токе азота до 500 °С и выдерживают 1.5 ч. По данным ПЭМ и РФА полученный порошок является композитом состава, мас.%: 66 - MoO2; 34 – C; на основе моноклинной структуры диоксида молибдена MoO2 с параметрами элементарной ячейки a = 5.622 Å, b = 4.820 Å, c = 5.590 Å и β = 120.12° и представляет собой матрицу из углерода, в которой распределены частицы диоксид молибдена MoO2 размером 10 - 12 нм. При рН 5 в интервале концентраций 10-1÷10-6 М угловой коэффициент электродной функции близок к теоретическому значению и равен 59 ± 0.5 мВ.

Таким образом, авторами предложен ионоселективного материала для определения ионов калия в водных растворах состава, мас.%: (83÷66) - MoO2; (17÷34) – C, обладающий наряду с возможностью определения концентрации К+ в водных растворах в широком интервале концентраций определяемого иона высоким угловым коэффициентом электродной функции близким к теоретическому.

Ионоселективный материал для определения ионов калия, содержащий диоксид молибдена и углеродсодержащий материал, отличающийся тем, что в качестве углеродсодержащего материала он содержит углерод при следующем соотношении компонентов, мас.%: диоксид молибдена MoO 83-66; углерод 17-34, причем структура материала представляет собой матрицу из углерода, в которой распределены частицы диоксида молибдена MoOразмером 10-12 нм.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 99.
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
Показаны записи 11-17 из 17.
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ed9c

Способ получения композита ортованадат лития/углерод

Изобретение относится к получению композита ортованадат лития/углерод LiVO/C в мелкодисперсном состоянии, который может быть использован в качестве эффективного анодного материала химических источников тока. Способ получения указанного композита включает гидротермальную обработку реакционной...
Тип: Изобретение
Номер охранного документа: 0002683094
Дата охранного документа: 26.03.2019
08.02.2020
№220.018.0040

Способ получения наносфер оксида железа (iii)

Изобретение относится к технологии получения наночастиц оксида железа (III) α-FeO, который может быть использован в качестве пигмента, катализатора, сенсибилизатора солнечных батарей, эффективного анодного материала химических источников тока, газочувствительного сенсора для определения паров...
Тип: Изобретение
Номер охранного документа: 0002713594
Дата охранного документа: 05.02.2020
09.03.2020
№220.018.0ac7

Способ получения титаната натрия

Изобретение относится к технологии получения титаната натрия NaTiO, который может быть использован в качестве эффективного анодного материала литиевых и натриевых источников тока, фотокатализатора в ультрафиолетовом и видимом диапазоне света, газочувствительного сенсора для определения...
Тип: Изобретение
Номер охранного документа: 0002716186
Дата охранного документа: 06.03.2020
30.05.2023
№223.018.7382

Способ получения микросфер оксида железа feo

Изобретение относится к металлургии, в частности к способу получения микросфер оксида железа FeO, который может быть использован в качестве эффективного анодного материала химических источников тока, цианобактерицидного реагента, предотвращающего размножение сине-зеленых водорослей, сенсорного...
Тип: Изобретение
Номер охранного документа: 0002762433
Дата охранного документа: 21.12.2021
+ добавить свой РИД