×
10.04.2016
216.015.2ba8

СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С. Изобретение позволяет получить нано-ультрадисперсный порошок оксида металла с заранее заданной морфологией при низких температурах. 2 ил., 3 пр.
Основные результаты: Способ получения наноультрадисперсного порошка оксида металла, включающий обработку исходной смеси, содержащей хлорид соответствующего металла, в токе водяного пара при повышенной температуре, отличающийся тем, что в исходную смесь, содержащую растворимый хлорид соответствующего металла, дополнительно вводят хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия = 1÷2:1 и обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С.
Реферат Свернуть Развернуть

Изобретение относится к области химической промышленности. Порошки оксидов металлов могут быть использованы в качестве электродных материалов, также для усовершенствования имеющихся свойств и получения новых, в частности в химической промышленности для увеличения каталитических свойств, в материаловедении для улучшения спекаемости композиционной керамики, в техники для производства стекол и эмали, применяются в сельском хозяйстве, в медицине, в металлургии, в электротехнике.

Известен способ получения наноразмерных частиц кобальтата лития, включающий использование в качестве реакционной среды расплавленной смеси хлоридов лития и кобальта, которые были обработаны сухим воздухом в течение 6-8 часов, либо путем его барботирования через расплав, либо созданием потока газа над расплавом с последующим охлаждением, растворением солевого плава в дистиллированной воде и фильтрацией (патент RU 2461668, МПК С30В 29/16: B82Y 40/00; 2012 г.).

Недостатком известного способа является трудоемкость процесса, использование высоких температур 600-700°С, наличие в конечном продукте примесей оксидов (Сo2О3 и Сo3О4).

Наиболее близким по технической сущности является способ получения наночастиц оксида металла, включающий обработку неорганической соли металла, выбранного из ряда: алюминий, кобальт, кальций, медь, магний, железо, в токе водяного пара при скорости его подачи 20-30 мл/мин и температуре 500-900°С (патент RU №2384522; МПК С01В 13/20; В82В 3/00; 2010 г.).

Недостаток данного способа является высокая температура получения (500-900°С).

Таким образом, перед авторами стояла задача - разработать способ получения наноульрадисперсного порошка оксида металла, обеспечивающего получение при более низких температурах частиц порошка с заранее заданной определенной морфологией.

Поставленная задача решена в способе получения наноультрадисперсного порошка оксида металла, включающего обработку исходной смеси, содержащей хлорид соответствующего металла, в токе водяного пара при повышенной температуре, в котором в исходную смесь, содержащую растворимый хлорид соответствующего металла, дополнительно вводят хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия =1÷2:1 и обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С.

В настоящее время из патентной и научно-технической литературы не известен способ получения наноультрадисперсного порошка оксида металла, в котором обработку неорганической растворимой соли соответствующего металла в парах водяного пара ведут в присутствии хлорида натрия, взятого в определенном отношении к соли.

Авторами предлагается простой и надежный способ получения наноультрадисперсных оксидов металла путем термогидролиза с использованием хлорида натрия в качестве барьера, препятствующего укрупнению частиц в процессе их получения. Предлагаемый метод не требует больших энергетических затрат и дорогостоящего аппаратного оформления. Сущность способа заключается в следующем. Растворимая соль хлорида соответствующего металла, смешанная с хлоридом натрия, под действием температуры и водяного пара подвергается термогидролизу, при этом использование растворимых хлоридов соответствующих металлов позволяет уносить продукт реакции (хлороводород) вместе с током газообразной воды и газа-носителя (воздух). При этом снижение температуры процесса не дает возможности получения частиц наноультрадисперсного размера. При низких температурах получаемые оксиды металла имеют более крупные размеры вследствие слипания частиц, при значительной выдержке и при ограничении времени синтеза происходит загрязнение целевого продукта вследствие не полного прохождения реакции. Введение хлорида натрия позволяет устранить недостаток слипания и роста частиц при длительной выдержке, то есть хлорид натрия в данном случае выступает в качестве своеобразного барьера. Перетирание в ступке высушенного порошка, полученного после смешения растворов хлоридов соответствующего металла и хлорида натрия, позволяет гомогенизировать полученную смесь. Использование хлорида натрия в качестве барьера обусловлено его химическими и физическими свойствами, а также его большой доступностью. Температура плавления хлорида натрия 800,8°С. Высокая температура плавления обуславливает в твердом состоянии отсутствие химического взаимодействия с хлоридами соответствующего металла в реакции термогидролиза, его растворимость в воде обеспечивает возможность полной очистки получаемого порошка оксида металла. В процессе термогидролиза, выделяющийся хлороводород является газообразным продуктом и улавливается в резервуар с холодной дистиллированной водой. Использование установки с замкнутым циклом позволяет избежать попадания следовых количеств хлороводорода в атмосферу. Для контроля реакции периодически измеряют электропроводность образующегося раствора НСl. После прекращения изменения электропроводности процесс останавливают. Далее порошок отмывают от хлорида натрия.

Предлагаемый способ получения оксида металла может быть осуществлен следующим образом. Сухой порошкообразный растворимый в воде хлорид соответствующего металла и хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия=1÷2:1 предварительно растворяют в дистиллированной воде, после чего сливают растворы вместе и высушивают до образования сухого кристаллического осадка. Полученный кристаллический осадок для гомогенизации перетирают до однородной массы, после чего помещают в печь в кварцевом реакторе. Кварцевый реактор снабжен подводящими и отводящими трубками. Водяной пар подают со скоростью 40-70 мл/мин. Нагревают печь до температуры 300-400°С и выдерживают при этой температуре до полного прохождения реакции. Контроль полноты прохождения реакции проводят путем измерения электропроводности образующегося раствора соляной кислоты. Замкнутый цикл предохраняет от попаданий следовых количеств хлороводорода в атмосферу, поскольку газообразный продукт реакции улавливается в резервуар с холодной дистиллированной водой. При прекращении изменения электропроводности подачу водяного пара в кварцевый реактор прекращают и снижают температуру печи - до комнатной. После извлечения порошка из реактора проводят его отмывку от хлорида натрия дистиллированной водой. Отмывку прекращают при отсутствии качественной реакции на ион хлора.

Контроль проведения термогидролиза осуществляется с помощью измерения сопротивления соляной кислоты в дистиллированной воде. При завершении реакции сопротивление либо перестает изменяться, либо изменяется незначительно. Аттестацию и контроль размера частиц, составом и морфологией проводят с помощью рентгенофазового анализа и электронной микроскопии (фазовый состав).

Пример 1.

Берут 5 г хлорида меди и 7,5 г хлорида натрия в соотношении 1:1,5, растворяют в дистиллированной воде, затем смешивают и просушивают до сухого кристаллического осадка. Затем навески перемешивают в агатовой ступке в течение 30 мин до однородной массы и помещаются в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скорость до 300°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 40 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 4 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид меди (II). Полученные частицы имеют эллипсовидную форму с размером зерен 100-200 нм (см. фиг. 1).

Пример 2.

5 г хлорида кобальта (II) и 10 г хлорида натрия в соотношениии 1:2 растворяют в дистиллированной воде, смешивают и просушивают до сухого кристаллического осадка. Затем навеску перемешивают в агатовой ступке в течение 30 мин и помещают в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скоростью до 400°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 70 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 5 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид кобальта (II). Полученные частицы имеют сферическую форму с размером зерен до 100 нм (см. фиг. 2).

Пример 3.

Берут 5 г хлорида олова (II) и 5 г хлорида натрия, растворяют в небольшом количестве дистиллированной воды и смешивают в соотношении 1:1 с раствором хлорида натрия. Затем полученный раствор просушивают до сухого кристаллического осадка и перемешивают в агатовой ступке в течение 30 мин до образования однородной массы и помещают в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скоростью до 400°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 60 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 5 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид олова (II). Полученные частицы имеют форму прутков с шириной от 50-200 нм и длиной до нескольких мкм.

Таким образом, авторами предлагается простой и надежный способ получения наноультрадисперсного порошка оксида металла с использованием значительно более низких температур, обеспечивающий получение частиц определенной морфологии.

Способ получения наноультрадисперсного порошка оксида металла, включающий обработку исходной смеси, содержащей хлорид соответствующего металла, в токе водяного пара при повышенной температуре, отличающийся тем, что в исходную смесь, содержащую растворимый хлорид соответствующего металла, дополнительно вводят хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия = 1÷2:1 и обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С.
СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА
СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 102.
10.09.2013
№216.012.66c8

Способ получения средства для рентгенологического исследования

Изобретение относится к способу получения средства для рентгенологических исследований путем обработки суспензии танталата элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий,...
Тип: Изобретение
Номер охранного документа: 0002491959
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.abec

Способ получения нанопорошка сложного оксида циркония, иттрия и титана

Изобретение может быть использовано в производстве плотной износостойкой керамики, твердых электролитов. Способ получения нанопорошка сложного оксида циркония, иттрия и титана включает приготовление исходного раствора солей нитратов, введение в него органической кислоты и титансодержащего...
Тип: Изобретение
Номер охранного документа: 0002509727
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
Показаны записи 1-10 из 43.
10.09.2013
№216.012.66c8

Способ получения средства для рентгенологического исследования

Изобретение относится к способу получения средства для рентгенологических исследований путем обработки суспензии танталата элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий,...
Тип: Изобретение
Номер охранного документа: 0002491959
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
+ добавить свой РИД