30.08.2022
222.018.40d0

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50 для классификации подводных объектов

Вид РИД

Программа для ЭВМ

Хеш-код депонирования: 44b956ee1d23b5c8d8ce6c65aa278834c8101771fe9706357f6854bc2da4cff5
Юридическая информация Свернуть Развернуть
Описание Свернуть Развернуть
Описание произведения: Аннотация: В основе программы для решения многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50,решаюшей задачу классификации подводных объектов лежит обучение нейросетевой модели на специализированном датасете, состоящем из 36 классов подводных объектов, собранных самостоятельно. Назначение РИД: Решение задачи классификации на фото и видео последовательностях с помощью нейронной сети. Сведения об охраняемых результатах интеллектуальной деятельности, использованных при создании: Pytorch BSD-style license https://github.com/pytorch/pytorch Решение задачи распознавания текста. Доля использования 0,4 Описание творческого вклада каждого автора при создании результата интеллектуальной деятельности: Павлова Е.Д. Доля творческого вклада - 30%. Реализация архитектуры и базового функционала. Якушкин О.О. Доля творческого вклада - 60%. Разработка общей структуры реализации системы. Пен Е.А. Доля творческого вклада - 10%. Разработка общей архитектуры системы. Дата начала и окончания разработки: 30.12.2021 г. - н.в. Основание возникновения прав на результат интеллектуальной деятельности: Служебное задание №8 от 10.01.2022 г.
Язык программирования, с использованием которого создана программа для ЭВМ (База данных)
Python
Вид и версия операционной системы, для функционирования под управлением которой предназначена программа для ЭВМ (База данных)
MacOs, Windows, Linux
Объем программы для ЭВМ (Базы данных) в машиночитаемой форме в единицах, кратных числу байт
90 МБ
Ключевые слова: ResNet50, подводные объекты
Реферат Свернуть Развернуть
Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50, дообученной на 36 классах подводных объектов, представляет собой результат нахождения коэффициентов связей между нейронами, в результате которого было достигнуто значение функции потерь, равное 0.0522. Обучение архитектуры ResNet50 осуществлялось с весов, находящихся в открытом доступе. Данные для обучения были размечены самостоятельно, а также агрегированы в интернете автоматически. Составные части, модули РИД: 1) Набор полученных параметров для конкретной архитектуры, полученный в результате решения многопараметрической задачи нелинейной оптимизации; 2) История обучения со значениями функции потерь на каждой итерации. Аналоги/конкурентные РИД (укажите сходные или конкурирующие РИД): Полный аналог разрабатываемой системы отсутствует. Конкурентные решения: веса, полученные на других датасетах с той же архитектурой и подобные им. Отличия от аналогов/ конкурентные преимущества РИД: в связи с уникальностью обучающего множества, полученное решение будет значительно лучше решать задачу классификации в конкретной области. Код (коды) продукции в соответствии с Общероссийским классификатором продукции по видам экономической деятельности: 58.29.21.000 Класс (классы) программного обеспечения, которому (которым) соответствует программное обеспечение: 02.11; 04.13; 04.16
Оригинал произведения Свернуть Развернуть
Содержательная часть РИД:
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 11.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
23.03.2022
№222.018.4085

Дизайн логотипа mustovo

Логотип состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Произведение искусства
23.03.2022
№222.018.4086

Товарный знак mustovo

Обозначение товарного знака состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Патент
Номер охранного документа: 584692
Дата охранного документа: 23.08.2016
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
Показаны записи 1-9 из 9.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из...

Похожие РИД в системе