04.10.2021
221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

Вид РИД

Программа для ЭВМ

Хеш-код депонирования: 9c888618af51eabd55ccfa509e38e0ec685c3ae6fa9e70908ad63b418b405bc3
Юридическая информация Свернуть Развернуть
Описание Свернуть Развернуть
Описание произведения: В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении kepler.gl с помощью простого программного интерфейса.
Язык программирования, с использованием которого создана программа для ЭВМ (База данных)
Python
Вид и версия операционной системы, для функционирования под управлением которой предназначена программа для ЭВМ (База данных)
MacOs, Windows, Linux
Объем программы для ЭВМ (Базы данных) в машиночитаемой форме в единицах, кратных числу байт
репозиторий: 5,8 МБ
Ключевые слова: Серверное приложение, kepler.gl
Реферат Свернуть Развернуть
Программа для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl включает в себя три основных метода: добавление одной точки в слой, добавление целого слоя с его настройкой и отображение карт высот заданной площади. Получение данных от пользователей происходит с помощью запросов, описанных в документации. Для конечных пользователей программа представляет собой контейнер, после установки которого можно сразу отображать данные без дополнительных действий по настройке окружения. Программное обеспечение универсально и подходит для отображения различных объектов. Наборы примеров целевой направленности могут быть предоставлены заказчиком. Базовый функционал заключается в: 1) Настройке и добавлении слоев; 2) Добавлении дополнительных данных; 3) Отображении карт высот на площади, заданной граничными координатами. Вышеуказанный функционал предусматривает возможность доработки в соответствии с техзаданием конкретных заказчиков. Сведения об охраняемых результатах интеллектуальной деятельности, использованных при создании: Вид и наименование использованного РИДа: Flask Основание возникновения прав: BSD License Источник: https://flask.palletsprojects.com/en/2.0.x/ Описание использования: API Доля использования: 0.7 Вид и наименование использованного РИДа: Elevation Основание возникновения прав: Apache License 2.0 Источник: http://elevation.bopen.eu/en/stable/ Описание использования: Получение высот Доля использования: 0.1 Вид и наименование использованного РИДа: GeoPandas Основание возникновения прав: BSD License Источник: https://geopandas.org/ Описание использования: Предобработка полученных данных Доля использования: 0.1 Составные части, модули РИД: 1. Взаимодействие между платформой пользователем и приложением. API для получения данных для отображения; 2. Обработка полученных данных. Формирование слоев в конечном приложении для пользователя. Аналоги/конкурентные РИД: полный аналог разрабатываемой системы отсутствует. Конкурентные решения: keplergl_cli, vis.GL, QGIS и подобные им. Отличия от аналогов: на текущем этапе разработки - готовый инструмент для использования, автоматического формирования данных по заданным координатам. Код продукции в соответствии с Общероссийским классификатором продукции по видам экономической деятельности: 58.29.21.000 Классы программного обеспечения, которым соответствует программное обеспечение: 02.05; 04.16; 04.01
Оригинал произведения Свернуть Развернуть
Содержательная часть РИД:
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 11.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
23.03.2022
№222.018.4085

Дизайн логотипа mustovo

Логотип состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Произведение искусства
23.03.2022
№222.018.4086

Товарный знак mustovo

Обозначение товарного знака состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Патент
Номер охранного документа: 584692
Дата охранного документа: 23.08.2016
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из...
Показаны записи 1-9 из 9.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из...
30.08.2022
№222.018.40d0

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети resnet50 для классификации подводных объектов

Аннотация: В основе программы для решения многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50,решаюшей задачу классификации подводных объектов лежит обучение нейросетевой модели на специализированном датасете, состоящем из 36 классов подводных объектов, собранных...

Похожие РИД в системе

+ добавить свой РИД