30.08.2022
222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Вид РИД

Программа для ЭВМ

Хеш-код депонирования: 962c26e00b980a13ea93e8bb19c215bc093f4d0b48cd7cdc69f03923fa0e82c8
Юридическая информация Свернуть Развернуть
Описание Свернуть Развернуть
Описание произведения: Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из видеопоследовательности нейросетевыми методами для дальнейшего использования. Тип программы ЭВМ: серверное приложение. Сведения об охраняемых результатах интеллектуальной деятельности, использованных при создании: Tesseract Open Source OCR Engine Apache-2.0 license hhttps://github.com/tesseract-ocr/tesseract Решение задачи распознавания текста. Доля использования 0,6. FastAPI framework MIT license https://github.com/tiangolo/fastapi Разработка API. Доля использования 0,2. Описание творческого вклада каждого автора при создании результата интеллектуальной деятельности: Павлова Е.Д. Доля творческого вклада - 30%. Реализация архитектуры и базового функционала. Якушкин О.О. Доля творческого вклада - 60%. Разработка общей структуры реализации системы. Пен Е.А. Доля творческого вклада - 10%. Разработка общей архитектуры системы. Дата начала и окончания разработки: 30.12.2021 г. - н.в. Основание возникновения прав на результат интеллектуальной деятельности: Служебное задание №7 от 10.01.2022 г.
Язык программирования, с использованием которого создана программа для ЭВМ (База данных)
Python
Вид и версия операционной системы, для функционирования под управлением которой предназначена программа для ЭВМ (База данных)
MacOs, Windows, Linux
Объем программы для ЭВМ (Базы данных) в машиночитаемой форме в единицах, кратных числу байт
7 КБ
Ключевые слова: нейронная сеть, подводная видеокамера
Реферат Свернуть Развернуть
Программа для выделения текстовых данных из изображений подвижных подводных видео камер, использует библиотеку Tesseract для решения задачи распознавания текста на изображении. Для автоматического разбиения видео ряда на кадры используется библиотека FFmpeg. По заданным координатам (4 точки -высота и ширина) на кадре выделяется пространство откуда необходимо извлечь текстовую информацию о широте и долготе местонахождения подводной камеры. Агрегируются данные для каждого кадра. Для уточнения и сокращения количества ошибок считывания применяется алгоритм постобработки полученных данных, который заключается в исключении незначимых символов, преобразование строки в число, а также проведение дополнительных проверок. Такого рода обработка существенно снижает процент ошибок считывания, но не устраняет их полностью. Программное обеспечение универсально и подходит для извлечения различной текстовой информации. Наборы примеров целевой направленности могут быть предоставлены заказчиком. Базовый функционал: 1) Извлечение текстовой информации из указанной части изображения; 2) Сбор данных об местоположении кадра; 3) Разбиение видеопоследовательности на кадры. Вышеуказанный функционал предусматривает возможность доработки в соответствии с техзаданием конкретных заказчиков. Составные части, модули РИД: 1) Взаимодействие между нейросетью и приложением. API для получения текстовых данных из изображения. 2) Обработка полученных от пользователя данных на сервере. Разбиение видеоряда на кадры. Формирование ответа на запрос пользователя. Аналоги/конкурентные РИД: Полный аналог разрабатываемой системы отсутствует. Конкурентные решения: Cloud Video Intelligence API, Microsoft OneNote, SimpleOCR и подобные им. Отличия от аналогов/ конкурентные преимущества РИД: На текущем этапе разработки: целенаправленное извлечение и агрегирование координат из всего видеоряда Код (коды) продукции в соответствии с Общероссийским классификатором продукции по видам экономической деятельности: 58.29.21.000 Класс (классы) программного обеспечения, которому (которым) соответствует программное обеспечение: 02.11; 04.13; 04.16
Оригинал произведения Свернуть Развернуть
Содержательная часть РИД:
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 11.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
23.03.2022
№222.018.4085

Дизайн логотипа mustovo

Логотип состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Произведение искусства
23.03.2022
№222.018.4086

Товарный знак mustovo

Обозначение товарного знака состоит из комбинированного изображения, состоящего из надписи MUSTOVO синим цветом (RGB 20-68-110) на белом фоне и графического элемента слева от надписи, выполненного из чередующихся квадратов и кругов оранжевого цвета (RGB 255-108-0), расположенных по кругу.
Тип: Патент
Номер охранного документа: 584692
Дата охранного документа: 23.08.2016
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
Показаны записи 1-9 из 9.
30.06.2021
№221.018.3f83

Водныйинстабот: искусственный интеллект интерактивного выделения морских объектов в социальных сетях

Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых...
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40d0

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети resnet50 для классификации подводных объектов

Аннотация: В основе программы для решения многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50,решаюшей задачу классификации подводных объектов лежит обучение нейросетевой модели на специализированном датасете, состоящем из 36 классов подводных объектов, собранных...

Похожие РИД в системе