30.06.2021
221.018.3f83

ВодныйИнстаБот: Искусственный интеллект интерактивного выделения морских объектов в Социальных сетях

Вид РИД

Программа для ЭВМ

Хеш-код депонирования: d117e218c9d5c4e22d741b4a379f3417adf04a35c8f3abafc0eab6638bbd162c
Юридическая информация Свернуть Развернуть
Наименование РИД на английском: WaterInstaBot: Artificial Intelligence for detection and segmentation of Marine Objects in Social Networks
Описание Свернуть Развернуть
Описание произведения: Полученное программное решение представляет собой автоматизированного инстаграм-бота. Через определенное количество времени программа проверяет наличие новых публикаций по заданному хэштегу. При публикации поста с хэштегом #biogeohub пользователю необходимо указать один из поддерживаемых классов. Если была найдена публикация или несколько постов с хэштегом, то бот последовательно скачает изображение, разбирает комментарий с целью поиска уточняющих классов, обработает изображение с помощью сегментационной модели, полученный результат размещает на imgbb на 15 минут. Сделав 2 POST запроса к официальному API -пост с результирующим изображением и подписью использованного класса будет опубликован. Составные части, модули РИД: Компоненты решения: • бизнес аккаунт инстаграм • подключенное фейсбук приложение • библиотека instaloader • модель сегментации • система автоматической проверки обновлений постов, помеченных тегом • бизнес-логика системы интеллектуального интерактивного выделения морских объектов в Социальных сетях
Язык программирования, с использованием которого создана программа для ЭВМ (База данных)
Python
Вид и версия операционной системы, для функционирования под управлением которой предназначена программа для ЭВМ (База данных)
Linux
Объем программы для ЭВМ (Базы данных) в машиночитаемой форме в единицах, кратных числу байт
2МБ
Ключевые слова: FSL, Instagram, Social Networks, Bot
Реферат Свернуть Развернуть
Система автоматического взаимодействия с пользователями социальных сетей. Позволяет в ответ на вопросы пользователя типа «#biogeohab на моей картинке Окунь?» выдавать размеченные изображения, на которых выделен искомый пользователем класс животного. В результате взаимодействия пользователь получает сегментированное изображение, на котором поверх исходного отмечен искомый пользователем класс.
Оригинал произведения Свернуть Развернуть
Содержательная часть РИД:
Источник поступления информации: Портал edrid.ru

Показаны записи 1-9 из 9.
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из...
30.08.2022
№222.018.40d0

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети resnet50 для классификации подводных объектов

Аннотация: В основе программы для решения многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50,решаюшей задачу классификации подводных объектов лежит обучение нейросетевой модели на специализированном датасете, состоящем из 36 классов подводных объектов, собранных...
Показаны записи 1-9 из 9.
30.06.2021
№221.018.3f84

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
30.06.2021
№221.018.3f85

Интеллектуальная база знаний морских объектов для few-shot-learning и обученные на их базе веса модели искусственной нейронной сети

База знаний содержит 60 классов объектов, такие как: • краб • скумбрия • барракуда • удильщик • осьминог • мидии • рыба-клоун • хирург • крылатка • дракон • звезда • еж • угорь • голубой дракон • окунь • камбала • медуза • креветка • ангел • большерот • медуза • групер •...
01.10.2021
№221.018.3fd7

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети vision transformers, обученной с помощью метода dino

В основе решения многопараметрической задачи нелинейной оптимизации для архитектуры нейронной сети Vision Transformers, с применением метода DINO, лежит обучение нейросетевой модели в течение 82 эпох на специализированном датасете, собранном самостоятельно. Назначение РИД: построение карт...
04.10.2021
№221.018.3fdb

Программный интерфейс приложения kepler.gl для добавления и редактирования географических объектов на карте

В основе программы для автоматического отображения и редактирования географических данных в локальном приложении kepler.gl лежит сбор полученных данных, их предобработка и отображение с помощью kepler.gl. Назначение РИД: отображение и редактирование географических данных в локальном приложении...
04.10.2021
№221.018.3fdc

Программа для автоматического агрегирования данных узкой направленности с платформы «instagram» с помощью взаимодействия с пользователями

В основе программы для автоматического агрегирования данных узкой направленности платформы «Instagram» с помощью взаимодействия с пользователями лежит сбор открытых данных о публикациях, их предобработка с помощью технологий нейронных сетей, публикация ответного сообщения с полученными...
30.08.2022
№222.018.40cc

Система генерации отчетов о содержимом подводного видео ряда по результатам классификации его нейронной сетью

Аннотация: В основе программы для генерации отчетов о содержимом подводного видео ряда по результатам решения задачи классификации с помощью нейросетевого подхода, лежит разбиение видео последовательности на кадры, их предобработка и фильтрация, классификация объектов на каждом кадре с помощью...
30.08.2022
№222.018.40ce

Система реконструкции трехмерных моделей и их текстур по коротким видео последовательностям подводного видео

Аннотация: В основе системы реконструкции трехмерных моделей и их текстур по коротким видео, лежит разбиение видео последовательности на кадры, оценка качества каждого кадра, их извлечение контрольных точек с помощью технологий нейронных сетей, формирование облака точек и реконструкция трехмерной...
30.08.2022
№222.018.40cf

Выделение текстовых данных из изображений подвижных подводных видео камер

Аннотация: В основе программы для выделения текстовых данных из изображений подвижных подводных видео камер лежит разбиение видео последовательности на кадры, их предобработка с помощью технологий нейронных сетей, агрегация данных из каждого кадра. Назначение РИД: Извлечение данных из...
30.08.2022
№222.018.40d0

Решение многопараметрической задачи нелинейной оптимизации для архитектуры сети resnet50 для классификации подводных объектов

Аннотация: В основе программы для решения многопараметрической задачи нелинейной оптимизации для архитектуры сети ResNet50,решаюшей задачу классификации подводных объектов лежит обучение нейросетевой модели на специализированном датасете, состоящем из 36 классов подводных объектов, собранных...

Похожие РИД в системе

+ добавить свой РИД