×
09.03.2020
220.018.0ac7

Результат интеллектуальной деятельности: Способ получения титаната натрия

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения титаната натрия NaTiO, который может быть использован в качестве эффективного анодного материала литиевых и натриевых источников тока, фотокатализатора в ультрафиолетовом и видимом диапазоне света, газочувствительного сенсора для определения влажности воздуха, сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите. Способ включает получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, отличающийся тем, что в качестве титансодержащего соединения используют хлорид титана состава TiClи 3,5-15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl : NaOH = 1:(10÷40), а гидротермальную обработку осуществляют при температуре 140–160°С и избыточном давлении 360–617 кПа в течение 24-26 ч. Технический результат заключается в простоте и технологичности способа, обеспечивающего высокую чистоту конечного продукта за счет получения однофазного продукта, не содержащего примесных фаз. 1 ил., 3 пр.

Изобретение относится к способам получения оксидных материалов, в частности к способу получения титаната натрия, который может быть использован в качестве эффективного анодного материала литиевых батарей (Zhu H., Yang K., Lan H. et al. Electrochemical kinetics of Na2Ti3O7 as anode material for lithium-ion batteries // J. Electroanalyt. Chem. 2017. V. 788. P. 203–209) и натриевых источников тока (Yan X., Sun D., Jiang J. et al. Self-assembled twine-like Na2Ti3O7 nanostructure as advanced anode for sodium-ion batteries // J. Alloys Compd. 2017. V. 697. P. 208-214), фотокатализатора в ультрафиолетовом и видимом диапазоне света (Chang Y.-C., Lin J.-C., Wu S.-H. One-step growth of Na2Ti3O7 nanorods for enhanced photocatalytic activities and recyclability // J. Alloys Compd. 2018. V. 749. P. 955-960), газочувствительного сенсора для определения влажности воздуха (Zhang Y., Fu W., Yang H. A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery // Sensors Actuators: B. Chem. 2008. V. 135. P. 317–321), сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите (Jiang Y., Zhang P., Jin H. et al. Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage // J. Membr. Sci. 2019. V. 583. P. 190–199).

Известен способ получения титаната натрия, включающий растворение порошка металлического титана в смеси водного раствора пероксида водорода и гидроксида аммония, взятых при соотношении 4:1, при соотношении Ti : H2O = 3 : (5÷20), с последующим добавлением к полученному раствору с концентрацией титана 0.2 М гликолевой кислоты HOOCCH2OH в молярном соотношении Ti : гликолевая кислота = 2 : 3, а затем реакционную массу сушат на масляной бане при температуре 80 - 100°С. Полученное воздушно-сухое соединение растворяют в воде, добавляют натрийсодержащее соединение (ацетат натрия CH3COONa или карбонат натрия Na2CO3, или гидроксид натрия NaOH, или оксалат натрия Na2C2O4, или нитрат натрия NaNO3) при молярном соотношении Ti : Na = 10 : 7. Полученную реакционную массу сушат на масляной бане до получения воздушно-сухого препарата, а затем отжигают при температуре 700 - 800°С в течение 6 - 10 ч в атмосфере воздуха или инертной атмосфере. (Appl.CN108455663; МПК C01G23/00, H01M10/054, H01M4/485; 2018 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования большого количества химических реагентов.

Известен способ получения титаната натрия с использованием порошка титановой кислоты, как источника титана. Способ включает несколько стадий. На первой стадии 0.5 – 1 г поверхностно-активного вещества (цитрат натрия Na3C6H5O7 или олеат натрия NaC18H33O2, или стеарат натрия NaC18H35O2) растворяют в 30 – 70 мл воды, затем при перемешивании добавляют раствор натрийсодержащего соединения (гидроксид натрия NaOH или карбонат натрия Na2CO3, или гидрокарбонат натрия NaHCO3) с концентрацией натрия 0.12 – 0.6 М. К полученному раствору добавляют порошок титановой кислоты, содержащий натрий в молярном соотношении Na : Ti = (2.2 ÷ 2.8) : 3, перемешивая реакционную массу в течение 0.5 – 3 ч. Образующуюся суспензию белого цвета подвергают гидротермальной обработке при температуре 120 - 200°С в течение 6 - 24 ч. В результате получают осадок, который сушат с использованием лиофилизации, а затем подвергают двухступенчатому отжигу в инертной атмосфере: сначала при 300 - 400°С в течение 0.5 - 2 ч, а затем при температуре 500 - 800°С в течение 1 - 4 ч, с последующей промывкой конечного продукта водным раствором соляной кислоты HCl до нейтральной среды и его лиофильной сушкой. (Appl. CN109626415; МПК C01G23/00, H01M10/054, H01M4/485; 2019 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования лиофилизации для сушки осадков, а также большого количества химических реагентов.

Известен способ получения титаната натрия с использованием тетрабутоксититаната (C4H9O)4Ti, как источника титана. В известном способе титанат натрия получают в три стадии. На первой стадии в термостатированную ледяную уксусную кислоту CH3COOH добавляют тетерабутоксититанат (C4H9O)4Ti в объемном соотношении CH3COOH : (C4H9O)4Ti = 50 : (1 ÷ 5), после чего проводят тепловую обработку на воздухе полученного молочно-белого раствора при температуре 120 – 200°С в течение 5 – 12 ч. В результате образуется диоксид титана TiO2 в виде геля, который центрифугируют несколько раз с добавлением воды до установления нейтральной кислотности, а затем сушат при температуре 50°С в течение 24 – 36 ч. На второй стадии проводят гидротермальную обработку реакционного раствора при температуре 180 – 250°С в течение 8 – 15 ч, полученного растворением при непрерывном перемешивании порошка свежеприготовленного диоксида титана TiO2 в 1 – 5 М водном растворе гидроксида натрия NaOH. Полученный осадок фильтруют и сушат на воздухе при температуре 80°С в течение 24 – 36 ч. На третьей стадии воздушно-сухой осадок отжигают на воздухе при температуре 500°С в течение 1 – 3 ч. (Appl. CN108134075; МПК H01M4/485; 2018 г.).

Недостатком известного способа получения титана натрия является сложность процесса за счет его многостадийности и использования большого количества химических реагентов.

Наиболее близким к предлагаемому техническому решению является способ получения титаната натрия. В известном способе порошок оксида титана TiO2 при перемешивании добавляют к 0.5 - 20 М водному раствору гидроксида натрия NaOH в весовом соотношении NaOH : TiO2 = (1 ÷ 100) : 1, после чего реакционную смесь подвергают ультразвуковой обработке в течение 10 – 300 мин. Затем полученную суспензию помещают в автоклав и выдерживают при температуре 80 - 200°С в течение 0.5 - 24 ч. Конечный продукт промывают этанолом, водой и сушат на воздухе. (Appl. CN109148876; МПК C01G23/00, H01M10/54, H01M/485, H01M4/58; 2019 г.) (прототип).

Недостатком известного способа получения титаната натрия является сложность процесса за счет использования ультразвукового оборудования, не обеспечивающего, в частности полную гомогенизацию реакционной массы вследствие неравномерного воздействия ультразвуковых колебаний на обрабатываемую смесь.

Таким образом, перед авторами стояла задача разработать простой и технологичный способ получения титаната натрия, обеспечивающий высокую чистоту конечного продукта.

Поставленная задача решена в предлагаемом способе получения титаната натрия, включающем получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, в котором в качестве титансодержащего соединения используют хлорид титана состава TiCl3 и 3.5 - 15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl3 : NaOH = 1 : (10 ÷ 40), а гидротермальную обработку осуществляют при температуре 140 – 160°С и избыточном давлении 360 – 617 кПа в течение 24 - 26 ч.

В настоящее время из патентной и научно-технической литературы не известен одностадийный способ получения титаната натрия с использованием в качестве титансодержащего реагента хлорида титана состава TiCl3 в предлагаемых авторами условиях осуществления гидротермального синтеза.

Исследования, проведенные авторами, позволили сделать вывод, что титанат натрия может быть получен простым и технологичным способом при условии использования в качестве титансодержащего соединения хлорида титана состава TiCl3. Использование хлорида титана состава TiCl3 обеспечивает возможность ведения процесса синтеза в условиях гомогенного жидкофазного взаимодействия химических ингредиентов. При этом исключается необходимость в использовании процесса гомогенизации реакционной массы. Кроме того появляется возможность формирования хорошо окристаллизованного порошка конечного продукта титаната натрия без проведения кальцинирования промежуточного продукта. Следует отметить, что дополнительный высокотемпературный отжиг, как правило, применяется для получения соединений с упорядоченной кристаллической структурой. В противном случае образуется аморфная фаза.

Авторами экспериментальным путем было установлено, что существенным фактором, определяющим состав и структуру конечного продукта является использование хлорида титана состава TiCl3 и гидроксида натрия в молярном соотношении TiCl3 : NaOH = 1 : (10 ÷ 40). При уменьшении молярного соотношения исходных компонентов реакционной массы (содержание NaOH по отношению к TiCl3 меньше, чем 10) в продуктах реакции наблюдается в качестве примеси диоксид титана TiO2. При увеличении молярного соотношения исходных компонентов реакционной массы (содержание NaOH по отношению к TiCl3 больше, чем 40) дополнительно с основной фазой Na2Ti3O7 образуются гидроксиды титанатов натрия составов Na2Ti3O6(OH)·2H2O, Na2Ti2O4(OH)2. При уменьшении температуры гидротермальной обработки ниже 140°С и избыточного давления ниже 360 кПа образуется рентгеноаморфная фаза. Также при повышении температуры гидротермальной обработки выше 160°С и избыточного давления выше 617 кПа в конечном продукте появляются в качестве примесной фазы диоксид титана TiO2.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок гидроксида натрия NaOH растворяют в воде с получением 3.5 - 15 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к раствору хлорида титана состава TiCl3 в молярном соотношении TiCl3 : NaOH = 1 : (10 ÷ 40). Затем гомогенную смесь подвергают гидротермальной обработке при температуре 140 – 160°С и избыточном давлении 360 – 617 кПа в течение 24 – 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. Аттестацию конечного продукта проводят с помощью рентгенофазового анализа (РФА). По данным РФА полученный порошок белого цвета является титанатом натрия Na2Ti3O7 моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 20 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 10 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 28. Затем гомогенную массу подвергают гидротермальной обработке при температуре 160°С С и избыточном давлении 617 кПа в течение 24 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60. На фиг.1 представлена рентгенограмма Na2Ti3O7.

Пример 2. Берут 7.1 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 3.5 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 10. Затем гомогенную массу подвергают гидротермальной обработке при температуре 150°С С и избыточном давлении 475 кПа в течение 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Пример 3. Берут 30 г порошка гидроксида натрия NaOH растворяют в 50 мл воды с получением 15 М водного раствора гидроксида натрия. Полученный раствор при перемешивании добавляют к 16.4 мл раствору хлорида титана TiCl3, взятого в молярном соотношении TiCl3 : NaOH = 1 : 40. Затем гомогенную массу подвергают гидротермальной обработке при температуре 140°С С и избыточном давлении 360 кПа в течение 26 ч. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. По данным РФА полученный продукт однофазный, имеет состав Na2Ti3O7, кристаллизуется в моноклинной сингонии (пр. гр. P21/m.) с параметрами кристаллической решетки a = 9.128 Å, b = 3. 803 Å, c = 8.562 Å, β = 101.60.

Таким образом, авторами предлагается простой и технологичный способ получения титаната натрия, обеспечивающий высокую чистоту конечного продукта за счет получения однофазного продукта, не содержащего примесных фаз.

Способ получения титаната натрия, включающий получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, отличающийся тем, что в качестве титансодержащего соединения используют хлорид титана состава TiClи 3,5-15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl : NaOH = 1:(10÷40), а гидротермальную обработку осуществляют при температуре 140–160°С и избыточном давлении 360–617 кПа в течение 24-26 ч.
Способ получения титаната натрия
Источник поступления информации: Роспатент

Показаны записи 21-30 из 99.
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
Показаны записи 11-17 из 17.
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ed9c

Способ получения композита ортованадат лития/углерод

Изобретение относится к получению композита ортованадат лития/углерод LiVO/C в мелкодисперсном состоянии, который может быть использован в качестве эффективного анодного материала химических источников тока. Способ получения указанного композита включает гидротермальную обработку реакционной...
Тип: Изобретение
Номер охранного документа: 0002683094
Дата охранного документа: 26.03.2019
08.02.2020
№220.018.0040

Способ получения наносфер оксида железа (iii)

Изобретение относится к технологии получения наночастиц оксида железа (III) α-FeO, который может быть использован в качестве пигмента, катализатора, сенсибилизатора солнечных батарей, эффективного анодного материала химических источников тока, газочувствительного сенсора для определения паров...
Тип: Изобретение
Номер охранного документа: 0002713594
Дата охранного документа: 05.02.2020
23.04.2023
№223.018.5207

Ионоселективный материал для определения ионов калия

Изобретение предназначено для прямого потенциометрического определения концентрации ионов калия в водных растворах и может быть использовано для анализа природных и сточных вод, биологических жидкостей. Ионоселективный материал для определения ионов калия содержит диоксид молибдена и углерод...
Тип: Изобретение
Номер охранного документа: 0002732249
Дата охранного документа: 14.09.2020
30.05.2023
№223.018.7382

Способ получения микросфер оксида железа feo

Изобретение относится к металлургии, в частности к способу получения микросфер оксида железа FeO, который может быть использован в качестве эффективного анодного материала химических источников тока, цианобактерицидного реагента, предотвращающего размножение сине-зеленых водорослей, сенсорного...
Тип: Изобретение
Номер охранного документа: 0002762433
Дата охранного документа: 21.12.2021
+ добавить свой РИД