×
27.12.2019
219.017.f37e

Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток. Прозрачный электрод с асимметричным пропусканием света, содержит прозрачную подложку, выполненную из гибкого материала, на которую нанесен проводящий слой из Al с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, что обеспечивает более широкую область применения устройства. В алюминиевой пленке выполнены отверстия радиуса 300-700 нм, расположенные в виде гексагональной решетки, которая обеспечивает плотную упаковку фокусирующих микросфер, покрывающих отверстия. Наложенные на отверстия прозрачные сферы реализуют эффект фотонного наноджета и коллимируют падающее на них оптическое излучение в проходящие через отверстия пучки диаметром меньше длины волны падающего излучения и значительно меньше радиуса сферы. Система отверстий в проводящем слое, соответствующая плотной упаковке микросфер, создается методом микросферной фотолитографии. Плотноупакованные монослои микросфер наносятся методом центрифугирования. Технический результат заключается в расширении области применения пригодного для производства в промышленных масштабах, в том числе с применением рулонных технологий, и решается задача расширения функциональных возможностей прозрачного электрода. 1 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Предполагаемое изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток - прозрачные электроды.

Известно несколько вариантов прозрачных электродов, основными из которых являются сплошные слои ITO (Indium tin oxide - оксид индия-олова) (Genesio G., Maynadie J., Carboni, M., et al. "Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO)" New Journal of Chemistry. 2018. V. 42 P. 2351-2363) и подобных материалов, графена и углеродных нанотрубок ( E.J., L.J., L.M., E.M., A. Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials // Journal of Nanomaterials. 2016. V. 2016. Article ID 4928365, 12 pages; Kim C.-L., Jung C.-W., Oh Y.-J., Kim D.-E. A highly flexible transparent conductive electrode based on nanomaterials // NPG Asia Materials. 2017. V. 9. P e438), a также металлические наносетки (Huang S. et al, "A Highly Stretchable and Fatigue Free Transparent Electrode Based on an In Plane Buckled Au Nanotrough Network", Advanced Electronic Materials, 2017. V. 3(3)). Некоторые из таких электродов могут быть сделаны гибкими, к недостатком можно отнести тот факт, что ни один из перечисленных подходов не обеспечивает асимметрии пропускания света.

Известна конструкция прозрачного электрода с большим значением асимметрии пропускания света, основанная на фотонно-кристаллической структуре (Klimov V.V., Treshin I.V., Shalin A.S., Melentiev P.N., Kuzin A.A., Afanasiev A.E., Balykin V.I. "Optical Tamm state and giant asymmetry of light transmission through an array of nanoholes" Physical Review A V.92, 063842 (2015)), представляющая собой брэгговское многослойное диэлектрическое зеркало (чередующиеся слои MgF2 и TiO2 разной толщины), нанесенное на оксид алюминия и покрытое с другой стороны перфорированным слоем золота с периодом расположения отверстий 2 мкм, недостатком которой является очень слабое пропускание излучения при наличии асимметрии (доли процента от падающего света), а также сильная зависимость параметров от длины волны света.

Наиболее близким к предполагаемому изобретению и принятым в качестве прототипа является прозрачный электрод с асимметричным пропусканием света (Kovrov А.Е., Baranov D.A., Shalin A.S., Mukhin I.S., Simovski C.R. "Optically asymmetric structures for transparent electrodes", Proceedings of the International Conference Days on Diffraction 2016, pp. 234-236). Этот электрод представляет собой нанесенную на кварцевую подложку перфорированную золотую или серебряную пленку, упорядочение расположенные отверстия, которые покрыты сферическими микролинзами из полистирола, кварца или оксида титана диаметром от 2 до 40 длин волн. Такая конструкция характеризуется низким удельным сопротивлением, сопоставимым с сопротивлением чистого металла (<5 Ом/кв), высокой прозрачностью в оптическом диапазоне и значительной асимметрией пропускания: отношение коэффициента пропускания в прямом и обратном направлениях может превышать 4.7 при коэффициенте пропускания 91%. Однако такому электроду с асимметричным пропусканием света присущи следующие недостатки:

- он не является гибким, что сужает область его применения и исключает возможность его изготовления с использованием производительных рулонных (roll-to-roll) технологий;

- перфорирование проводящей пленки выполнено методом электронной литографии, который не позволяет получать образцы большого размера;

- использованные для изготовления проводящего слоя золото или серебро дороги.

Среди способов изготовления прозрачного электрода на основе перфорированного проводящего металлического слоя можно выделить фотолитографию через маску-шаблон [Ito, Т. and Okazaki, S., 2000. Pushing the limits of lithography. Nature, 406(6799), p. 1027], прямую литографию с использованием сфокусированного лазерного излучения [Cheng, Y., Huang, T.Y. and Chieng, C.C., 2002. Thick-film lithography using laser write. Microsystem Technologies, 9(1-2), pp. 17-22], а также литографию с применением сфокусированных пучков заряженных частиц, например, электронов или ионов [Watt, Е, Bettiol, А.А., Van Kan, J.A., Тео, E.J. and Breese, M.B.H., 2005. Ion beam lithography and nanofabrication: a review. International Journal of Nanoscience, 4(03), рр. 269-286]. Недостатками данных подходов являются необходимость использования заранее созданных фотошаблонов и низкая производительность методов.

Наиболее близким к предполагаемому способу создания прозрачного проводящего электрода и принятым в качестве прототипа является метод фотолитографии через массив полистироловых или стеклянных микросфер, упорядоченно расположенных на фоточувствительном слое резиста [Jiang, P., Prasad, Т., McFarland, M.J. and Colvin, V.L., 2006. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Applied Physics Letters, 89(1), р. 011908]. В данном способе на поверхность фоторезиста с помощью метода центрифугирования наносится упорядоченный слой микросфер из взвеси. Далее проводится экспонирование светом в УФ диапазоне с использованием несфокусированного излучения. Каждая микросфера выступает в качестве миниатюрной линзы, концентрирующей падающее излучение в область непосредственно в место контакта сферы и резиста. Во время проведения этапа проявления резиста микросферы смываются, и в слое фоторезиста формируется упорядоченный массив отверстий субмикронного диаметра, который далее используется в качестве шаблона для формирования массива отверстий в металлическом слое. Недостатком данного способа является неконтролируемое удаление массива микросфер во время технологических процессов проявления резиста.

Решается задача расширения области применения пригодного для производства в промышленных масштабах, в том числе, с применением рулонных технологий, и решается задача расширения функциональных возможностей за счет введения асимметрии пропускания света и гибкости электрода, а также удешевления способа его производства.

Сущность заключается в том, что прозрачный электрод с асимметричным пропусканием света, содержит прозрачную подложку выполненную из гибкого материала, на которую нанесен проводящий слой с упорядочение расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами. Проводящий слой выполнен из алюминия Al.

Подложка прозрачного электрода с асимметричным пропусканием света, содержащая нанесенный на нее проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполнена из гибкого материала, например, полимерного.

1. Проводящий слой прозрачного электрода с асимметричным пропусканием света, содержащий нанесенный на прозрачную подложку проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполнен из алюминия или иного металла, более дешевого, чем золото и серебро.

2. Перфорирование прозрачного электрода с асимметричным пропусканием света, содержащего нанесенный на прозрачную подложку проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполняется методом фотолитографии через микросферы с экспонированием фоторезиста плоским пучком актиничного излучения через предварительно нанесенный на него слой микросфер, размер которых совпадает с размером микросфер, входящих впоследствии в конструкцию электрода.

3. Нанесение массива микросфер на поверхность проводящего слоя с упорядоченно расположенными отверстиями производится методом центрифугирования из взвеси. Предлагаемая в качестве прозрачного электрода структура представляет собой металлическую пленку субмикронной толщины, нанесенную на гибкую прозрачную подложку из полимера, например, такого как поли диметил сил океан. В металлической пленке выполнены отверстия радиуса 300-700 нм; наиболее эффективно их расположение в виде гексагональной решетки, которая обеспечивает плотную упаковку фокусирующих микросфер, покрывающих отверстия. Наложенные на отверстия прозрачные сферы реализуют эффект фотонного наноджета и коллимируют падающее на них оптическое излучение в проходящие через отверстия пучки диаметром меньше длины волны падающего излучения и значительно меньше радиуса сферы.

Система отверстий в проводящем слое, соответствующая плотной упаковке микросфер, создается методом микросферной фотолитографии в ходе выполнения последовательных операций:

1) нанесения позитивного фоторезиста на подготовленный проводящий слой без отверстий, напыленный на исходную подложку,

2) нанесения на фоторезист из водной суспензии микросфер с малым разбросом по диаметру, образующих благодаря силам поверхностного натяжения слой с упаковкой, близкой к плотной гексагональной, характерные размеры которой задаются диаметром микросфер,

3) экспонирования фоторезиста плоским пучком актиничного излучения через микросферы, которые при этом фокусируют излучение в местах последующей локализации отверстий,

4) удаления микросфер,

5) проявления фоторезиста,

6) травления металлического слоя до достижения оптимального диаметра отверстий,

7) удаления фоторезиста.

В дальнейшем на перфорированный слой наносятся микросферы, аналогичные по диаметру сферам, использованным при экспонировании фоторезиста; их пространственное расположение воспроизводят расположение микросфер в ходе формирования перфорированного слоя, и сфокусированные ими световые пучки проходят через вытравленные в нем отверстия.

Как известно из литературы, выбором оптимального размера отверстий в металлической пленке, который регулируется режимами проявления и травления при перфорировании проводящего слоя, можно обеспечить нерезонансность (широкополосность) свойств предлагаемого покрытия. Значительная асимметрия пропускания обеспечивается тем, что при падении света со стороны сфер последние направляют попадающий на них свет в отверстия, суммарная площадь которых значительно меньше площади, покрываемой частицами (при плотной упаковке поперечное сечение сфер перекрывает 91% площади поверхности) и участвующей в сборе попадающего на нее света. При падении света с обратной стороны электрода пропускание определяется в основном суммарной площадью отверстий в перфорированном слое, малой по сравнению с общей площадью поверхности. Асимметрия пропускания света рассматриваемого прозрачного электрода расширяет функциональность и область применения данного электрода, в частности, при интеграции с элементами двойного назначения, работающими и как солнечный элемент при освещении внешним источником фотонов, так и работающими в режиме излучения света при приложении к электродам внешнего электрического напряжения. Использование основной подложки из материала, обладающего гибкостью, расширяет функционального прозрачного электрода, что обеспечивает его применимость в системах, испытывающих внешние механические напряжения и нагрузки.

Сущность изобретения поясняется фиг. 1-5, где

- на фиг. 1 приведено схематическое изображение оптически асимметричного электрода (вид сбоку): слой микросфер 1, металлическая пленка 2, подложка 3.

- на фиг. 2 приведено схематическое изображение оптически асимметричного электрода (вид сверху): слой микросфер 1, расположенных на цилиндрических отверстиях в металлической пленке 2, образующих гексагональную решетку.

- на фиг. 3 приведены графики зависимостей коэффициента пропускания света прозрачным электродом в прямом направлении (со стороны слоя микросфер) и асимметрии пропускания (отношения коэффициентов пропускания в прямом и обратном направлениях). Материал сфер - полистирол, их диаметр 1.3 мкм, толщина перфорированного проводящего слоя 100 нм.

- на фиг. 4 приведены графики зависимостей коэффициентов прямого (Tf) и обратного (Tb) пропускания света и электрического сопротивления (Rs) от радиуса отверстия. Материал сфер - полистирол, их диаметр 1.3 мкм, толщина перфорированного проводящего слоя 100 нм.

- на фиг. 5 приведена электронная микрофотография участка поверхности электрода со слоем микросфер 1 изготовленного методом микросферной фотолитографии.

Асимметрия пропускания в данной системе возрастает с увеличением радиуса сфер при фиксированном радиусе отверстий за счет подавления обратного пропускания при сохранении прямого и, соответственно, может задаваться на этапе изготовления выбором режима перфорирования. Эффект фокусировки излучения микросферами сохраняется при увеличении диаметра микросфер до более чем 10 мкм и, в первом приближении, чем больше диаметр микросфер, тем выше эффект асимметрии при сохранении высокого пропускания.

При увеличении радиуса отверстий при фиксированном радиусе сфер пропускание в прямом направлении быстро нарастает, после чего выходит на плато. Обратное пропускание нарастает медленно, и асимметрия пропускания (отношение пропускания в прямом и обратном направлениях) характеризуется максимумом при радиусе отверстий порядка 100 нм (фиг. 3). Эффект асимметрии не имеет выраженной спектральной зависимости во всем видимом диапазоне.

Поскольку проводящая подложка представляет собой металлическую пленку, отверстия в которой занимают малую часть ее площади, проводимость предлагаемого прозрачного электрода (менее 1 Ом/квадрат, фиг. 3) практически не отличается от проводимости металлической пленки и существенно превышает проводимость существующих аналогов. Проведенные измерения показывают, что требуемые оптические и электрические параметры электрода достигаются и при изготовлении проводящего слоя из, например, алюминия, который на порядки дешевле золота и в несколько раз дешевле серебра. Прозрачный электрод изготавливался с помощью установки термического напыления BockEdwards Auto 500, обеспечивающей напыление слоя Al (металлическая пленка 2 на фиг. 1). Нанесение фоторезиста и массива микросфер (слой микросфер 1 на фиг. 1 и фиг. 2) из взвеси выполнялось с помощью установки центрифугирования CarlSuss. Оптическое экспонирование на длине волны 405 нм реализовывалось с помощью установки оптической литографии CarlSuss MJB4. Измерение электрических характеристик электрода выполнялось с помощью модуля источника-измерителя Keithly. Оптические свойства прозрачного электрода измерялись при помощи конфокального лазерного микроскопа LSM710 (Carl Zeiss). Микроскопические изображения массива микросфер 3 на фиг. 5 формировались с помощью сканирующего электронного микроскопа Carl Zeiss.

Предполагаемое изобретение имеет следующие преимущества в сравнении с прототипом: гибкость, расширенные функциональные возможности и область применения за счет асимметрии пропускания, дешевизна и возможность изготовления изделий большого размера, в том числе с использованием рулонных технологий.


Прозрачный электрод с асимметричным пропусканием света и способ его изготовления
Прозрачный электрод с асимметричным пропусканием света и способ его изготовления
Прозрачный электрод с асимметричным пропусканием света и способ его изготовления
Прозрачный электрод с асимметричным пропусканием света и способ его изготовления
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
04.11.2019
№219.017.de8e

Способ изготовления неорганических перовскитных нановискеров типа cspbbr

Изобретение относится к области синтеза наноструктур на основе перовскитов, которые могут быть использованы в качестве материалов для нанофотоники для создания Фабри-Перо наносенсоров и фотонных интегральных схем. Способ изготовления неорганических перовскитных нановискеров типа CsPbBr включает...
Тип: Изобретение
Номер охранного документа: 0002705082
Дата охранного документа: 01.11.2019
24.11.2019
№219.017.e5c6

Устройство для сушки суспензий

Изобретение относится к химической и пищевой отраслям промышленности и может быть использовано при производстве сухих дисперсных материалов, в частности пищевого назначения, например сухого молока, наноинкапсулированных комплексных биологически активных ингредиентов или пектина. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002707022
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e5ff

Способ идентификации гидродинамических параметров тела

Изобретение относится к области гидродинамики, измерительной технике, лабораторным установкам, судостроению. Способ заключается в том, что телу в виде корпуса судна, погруженному в жидкость по ватерлинию, или с заданной осадкой, с установленным на корпусе судна управляемым электродвигателем с...
Тип: Изобретение
Номер охранного документа: 0002706909
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.edb0

Способ измерения интенсивности ультразвукового поля в жидкости

Использование: для определения интенсивности ультразвукового поля в жидкости. Сущность изобретения заключается в том, что в ванну с исследуемой жидкостью торцом к излучателю ультразвуковых колебаний, установленному в ванне, частично погружают оптически прозрачную измерительную камеру,...
Тип: Изобретение
Номер охранного документа: 0002708933
Дата охранного документа: 12.12.2019
09.02.2020
№220.018.0122

Способ встраивания биометрической информации в цветное изображение лица и устройство для осуществления способа

Изобретение относится к способу встраивания биометрической информации в цветные изображения лиц и устройству для осуществления способа. Техническим результатом является повышение универсальности, защищенности информации и надежности ее хранения в процессе обменных операций с памятью. Способ...
Тип: Изобретение
Номер охранного документа: 0002713762
Дата охранного документа: 07.02.2020
29.02.2020
№220.018.0799

Экструдер

Изобретение относится к пищевой промышленности и может быть использовано при производстве экструдированных пищевых продуктов. Экструдер содержит корпус, камеру прессования, матрицу, камеру измельчения с загрузочным бункером, распылительными форсунками и ножом, шнек и диск. Шнек выполнен сборным...
Тип: Изобретение
Номер охранного документа: 0002715394
Дата охранного документа: 27.02.2020
02.03.2020
№220.018.07df

Фотоактивная суспензия

Изобретение относится к материалам, используемым для решения экологических проблем, в медицине и санитарии, и может быть использовано для удаления органических примесей. Фотоактивная суспензия, включающая частицы оксида цинка, воду и аммиачную воду, дополнительно содержит нитрат цинка при...
Тип: Изобретение
Номер охранного документа: 0002715417
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07e6

Способ определения концентрации свинца (ii) в водных образцах

Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем...
Тип: Изобретение
Номер охранного документа: 0002715478
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0811

Датчик искрения

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках искрения и электрической дуги и предназначено для использования на электростанциях, в высоковольтных установках, на линиях электропередачи, на пожаро- и взрывоопасных предприятиях химической и...
Тип: Изобретение
Номер охранного документа: 0002715477
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0830

Способ определения передаточной функции фазового модулятора в интерферометре саньяка

Изобретение относится к области волоконной оптики. Способ определения передаточной функции фазового модулятора в интерферометре Саньяка включает подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда...
Тип: Изобретение
Номер охранного документа: 0002715479
Дата охранного документа: 28.02.2020
Показаны записи 1-10 из 14.
20.01.2014
№216.012.974b

Способ создания структур на основе полупроводниковых нанокристаллов и органических молекул

Изобретение относится к созданию структур на основе полупроводниковых нанокристаллов и органических молекул, которые могут быть использованы в качестве микрофлюидных элементов в оптоэлектронных устройствах. Способ предусматривает внедрение нанокристаллов и органических молекул в трековые поры...
Тип: Изобретение
Номер охранного документа: 0002504430
Дата охранного документа: 20.01.2014
20.07.2014
№216.012.de75

Электрический сенсор на пары гидразина

Изобретение может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина содержит диэлектрическую подложку, на которой расположены электроды и чувствительный слой, меняющий фотопроводимость в результате адсорбции паров...
Тип: Изобретение
Номер охранного документа: 0002522735
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df1c

Люминесцентный сенсор на пары аммиака

Изобретение предназначено для обнаружения и определения концентрации паров аммиака в атмосфере или пробе воздуха. Сенсор включает в себя полупроводниковые нанокристаллы (квантовые точки), внедренные в пристеночный слой трековых пор полиэтилентерефталатных мембран, при этом сами поры остаются...
Тип: Изобретение
Номер охранного документа: 0002522902
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fb88

Способ создания скрытых люминесцентных меток

Изобретение относится к средствам маркировки изделий. Технический результат заключается в повышении степени защиты маркировки. Способ основан на внедрении квантовых наностержней в трековые поры полимерных мембран и заключается в создании фотоиндуцированной анизотропии люминесценции в слое...
Тип: Изобретение
Номер охранного документа: 0002530238
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.050c

Способ создания фотовольтаических ячеек на основе гибридного нанокомпозитного материала

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO, полупроводниковые...
Тип: Изобретение
Номер охранного документа: 0002532690
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0710

Защитный элемент для идентификации подлинности изделий

Защитный элемент для идентификации подлинности изделий относится к области защиты от подделки и проверки подлинности ценных документов, который может быть использован для скрытой маркировки различных объектов с целью предотвращения неавторизованного производства этих объектов и упрощения...
Тип: Изобретение
Номер охранного документа: 0002533209
Дата охранного документа: 20.11.2014
13.01.2017
№217.015.6d92

Способ получения металлических пленок заданной формы

Изобретение относится к электронно-лучевой технологии и может быть использовано в оптике, фотонике, интегральной оптике, наноплазмонике и электронике. Способ получения металлических пленок заданной формы заключается в том, что на подложку с высоким электрическим сопротивлением предварительно...
Тип: Изобретение
Номер охранного документа: 0002597373
Дата охранного документа: 10.09.2016
26.08.2017
№217.015.ddee

Фотоэлектрический преобразователь на основе полупроводниковых соединений abc , сформированных на кремниевой подложке

Изобретение относится к солнечной энергетике, в частности к конструкции и составу слоев фотоэлектрических преобразователей с несколькими переходами. Задачей заявляемого изобретения является создание фотоэлектрического преобразователя с несколькими р-n-переходами, отличающегося повышенным КПД за...
Тип: Изобретение
Номер охранного документа: 0002624831
Дата охранного документа: 07.07.2017
08.07.2018
№218.016.6e70

Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты)

Изобретение относится к измерительной технике и может быть использовано в сканирующей зондовой микроскопии. Зонд для сканирующей зондовой микроскопии содержит кантилевер для атомно-силовой микроскопии с оптически активной областью, находящейся на острие иглы кантилевера. Активная область...
Тип: Изобретение
Номер охранного документа: 0002660418
Дата охранного документа: 06.07.2018
11.03.2019
№219.016.dc07

Диссоциативный люминесцентный наносенсор ионов металлов и водорода в водных растворах

Изобретение относится к химическим сенсорам. Наносенсор ионов металлов и водорода в водных растворах включает в себя полупроводниковые нанокристаллы (квантовые точки, КТ), связанные посредством координационной связи с молекулами органического красителя в комплекс, в котором собственная...
Тип: Изобретение
Номер охранного документа: 0002456579
Дата охранного документа: 20.07.2012
+ добавить свой РИД