×
02.03.2020
220.018.0830

Способ определения передаточной функции фазового модулятора в интерферометре Саньяка

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области волоконной оптики. Способ определения передаточной функции фазового модулятора в интерферометре Саньяка включает подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда которого обеспечивает сдвиг рабочей точки интерферометра на линейный участок интерферометрической функции, и измерение полученного сигнала интерферометра, который используют для определения передаточной функции фазового модулятора. На электрический вход фазового модулятора одновременно со вспомогательным сигналом подают второй управляющий сигнал напряжения в форме меандра с амплитудой, соответствующей оптическому сдвигу фаз, и с определенным периодом и измеряют полученный сигнал интерферометра, по которому рассчитывают фазовый сигнал, Из фазового сигнала рассчитывают импульсную характеристику фазового модулятора и, подвергая полученную импульсную характеристику методу идентификации передаточной функции, определяют искомую передаточную функцию фазового модулятора интерферометра Саньяка. Технический результат заключается в повышении точности определения передаточной функции ФМ в интерферометре Саньяка. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области волоконной оптики, в частности, к области создания волоконно-оптических датчиков физических величин, построенных по схеме интерферометра Саньяка, и может быть использовано для определения передаточной функции фазового модулятора (ФМ) в интерферометре Саньяка. Под передаточной функцией ФМ подразумевается функция преобразования электрического напряжения, приложенного к электродам ФМ, в сдвиг фазы оптического излучения, распространяющегося в ФМ. Передаточная функция ФМ определяет его амплитудно-частотную и фазо-частотную характеристики.

Известен способ измерения передаточной функции фазового модулятора (ФМ) в интерферометре Саньяка [Патент США №9518825, МПК G01C 19/72), дата публ. 18.09.2014]. Способ заключается в следующем: перед электрическим входом ФМ установлен цифровой фильтр, передаточная функция которого вычисляется адаптивным методом таким образом, чтобы она была обратна передаточной функции ФМ. Передаточную функцию ФМ вычисляют из передаточной функции цифрового фильтра в соответствии со следующим выражением:

НФМ(z)=1/НФЦ(z),

где НФМ(z) - передаточная функция ФМ, НФЦ(z) - передаточная функция цифрового фильтра, z - комплексная переменная.

Поскольку в известном способе ФМ в интерферометре Саньяка является частью оптической схемы волоконно-оптического гироскопа (ВОГ), в качестве сигнала ошибки для подстройки цифрового фильтра используют сигналы измерительного тракта ВОГ.

Недостатками известного способа являются: необходимость больших вычислительных мощностей, осуществимость способа только в схеме обработки сигнала ВОГ и влияние на точность измерения передаточной функции ФМ параметров системы регулирования ВОГ.

Известен способ измерения передаточной функции ФМ в интерферометре Саньяка, выбранный в качестве прототипа [Патент США №5504580, МПК G01C 19/72), дата публ. 30.11.1994]. Способ заключается в следующем: на электрический вход ФМ подают управляющий сигнал напряжения, представляющий собой меандр, амплитуда которого обеспечивает фазовый сдвиг рабочей точки интерферометра Саньяка на ±π/2 радиан, с периодическим сбросом управляющего напряжения, амплитуда которого соответствует фазовому сдвигу оптического сигнала на 2π радиан, причем частота сбросов во много раз меньше частоты меандра. Между выходом драйвера ФМ и электрическим входом ФМ устанавливают аналоговый фильтр, представляющий собой резистивно-емкостную схему, причем подбор номиналов емкости и сопротивления производится таким образом, чтобы отклик интерферометра Саньяка на управляющий сигнал напряжения представлял собой безынерционный процесс. Передаточная функция аналогового фильтра может быть вычислена исходя из подобранных номиналов резистивно-емкостной схемы, а передаточную функцию ФМ вычисляют из передаточной функции аналогового фильтра в соответствии со следующим выражением:

НФМ(z)=1/НФА(z),

где НФА(z) - передаточная функция аналогового фильтра.

Недостатками известного способа являются: осуществление настройки аналогового фильтра в ручном режиме путем подбора номиналов сопротивления и емкости аналоговых компонентов, в качестве передаточной функции ФМ принята функция, имеющая один нуль и один полюс, что уменьшает точность измерения передаточной функции аналогового фильтра и, соответственно, передаточной функции ФМ.

Способ решает задачу повышения точности определения передаточной функции ФМ в интерферометре Саньяка.

Поставленная задача решается следующим образом. Способ определения передаточной функции ФМ в интерферометре Саньяка включает подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда которого обеспечивает сдвиг рабочей точки интерферометра на линейный участок интерферометрической функции, и измерение полученного сигнала интерферометра, который используют для определения передаточной функции фазового модулятора. Новым является то, что на электрический вход фазового модулятора одновременно со вспомогательным сигналом подают второй управляющий сигнал напряжения в форме меандра с амплитудой, соответствующей оптическому сдвигу фаз Δϕ1=Nπ (где N=1,2,3…) и с периодом Т >> τ, где τ - время обхода оптическим сигналом волоконно-оптического контура интерферометра Саньяка, и измеряют полученный сигнал интерферометра Sинт из которого рассчитывают фазовый сигнал где где - среднее значение сигнала K=Т/τ - количество отсчетов длительностью τ в периоде T сигнала Sинт, k=[1…K/2] - порядковый номер отсчета сигнала N - количество периодов T в сигнале Sинт, =[1…N]- порядковый номер периода, причем Ф[1]=2Δϕ1, а из фазового сигнала Ф рассчитывают импульсную характеристику фазового модулятора SФМ, согласно выражению и, подвергая полученную импульсную характеристику методу идентификации передаточной функции, определяют искомую передаточную функцию фазового модулятора интерферометра Саньяка.

Сущность заявляемого изобретения поясняется следующим. На ФМ подают сигнал модуляции специальной формы, представляющий сумму двух сигналов: первый сигнал M1 представляет собой меандр с амплитудой, соответствующей оптическому сдвигу фаз Δϕ1=Nπ (где N=1,2,3…), и с периодом Т, где Т/2 - время, достаточное для получения передаточной функции, причем Т >> τ, где τ - время обхода оптическим сигналом волоконно-оптического контура интерферометра Саньяка; второй вспомогательный сигнал M2 представляет собой меандр с амплитудой, соответствующей оптическому сдвигу фаз Δϕ2=π/4 с периодом 2τ.

Половина периода сигнала М1 длительностью Т/2 представляет собой ступенчатое воздействие с амплитудой 2Δϕ1, функция которого в z-пространстве выражается следующим образом:

Учитывая, что волоконный контур интерферометра Саньяка задерживает распространяющийся по нему оптический сигнал на время τ, передаточную функцию волоконного контура НВК можно представить как линию задержки, и выразить ее следующим образом:

Учитывая (1), (2) и передаточную функцию ФМ НФМ, фазовый сдвиг интерферометра Саньяка ΔϕИС1 при подаче на ФМ сигнала М1 выражается следующим образом:

Согласно (3) ΔϕИС1 является реакцией ФМ на дельта-функцию с амплитудой 2Δϕ1. Таким образом, при подаче на электроды ФМ интерферометра Саньяка ступенчатого воздействия, результирующая разность фаз интерферометра Саньяка представляет собой импульсную характеристику ФМ, что обусловлено компенсационным характером интерферометра Саньяка: ступенчатое изменение сигнала модуляции вызывает ненулевую разность фаз интерферометра Саньяка только в течение времени τ после скачка сигнала модуляции.

Однако, поскольку интерферометр Саньяка характеризуется малой чувствительностью при нахождении рабочей точки в области вершины косинусоидальной интерферометрической зависимости, то в сигнал модуляции добавляют вспомогательный меандр М2 с периодом 2τ и амплитудой, обеспечивающей смещение рабочей точки интерферометра на наиболее чувствительный участок косинусоидального интерферометрического отклика - в точку квадратуры.

Прямоугольный смещающий сигнал М2 выражается в z-пространстве следующим образом:

Учитывая (2) и (4), фазовый сдвиг интерферометра Саньяка ΔϕИС2 при подаче на ФМ сигнала М2 выражается следующим образом:

Ввиду того, что выражение (5) содержит только одну гармонику, соответствующую частоте меандра М2, передаточную функцию НФМ на данной частоте можно принять равной единице. С учетом такого допущения, выражение (5) преобразуется следующим образом:

Согласно (6) ΔϕИС2 представляет собой меандр с амплитудой π/2.

Согласно заявляемому способу, на сдвиг фаз интерферометра Саньяка ΔϕИС оказывают влияние: сигнал модуляции (М12), передаточная функция волоконного контура интерферометра Саньяка НВК, а также передаточная функция ФМ НФМ. Таким образом, с учетом (3) и (6) фазовый сдвиг интерферометра Саньяка при подаче на ФМ сигнала (М12) выражается следующим образом:

Первое слагаемое выражения (7) представляет собой импульсную характеристику ФМ, а второе слагаемое выражения (7) не содержит информацию о передаточной функции ФМ, и служит в качестве вспомогательного сигнала для смещения рабочей точки интерферометра Саньяка на линейный участок косинусоидального интерферометрического отклика, и демодулируется в соответствии с алгоритмом демодуляции, сущность которого поясняется следующим:

1) Зарегистрированный выходной сигнал интерферометра, Sинт, усредняют по времени Т, где Т - период сигнала модуляции М1, для уменьшения случайной погрешности измерения. Для дальнейших операций используют сигнал равный половине полученного усредненного сигнала длительностью Т/2, соответствующий ступенчатому воздействию сигнала М1. Преобразованный таким образом сигнал интерферометра имеет вид:

где K=T/τ - количество отсчетов длительностью τ в периоде T сигнала SИНТ, k=[1…K/2] - порядковый номер отсчета сигнала N - количество периодов T в сигнале SИНТ, =[1…N] - порядковый номер периода.

2) Интерферометрический отклик интерферометра Саньяка, имеет косинусоидальную зависимость и, при подаче на ФМ сигнала (М12), выражается как:

где I1, I2 - интенсивности интерферирующих оптических сигналов, ΔϕE - фазовый сдвиг интерферометра Саньяка, вызванный внешними воздействиями на волоконный контур интерферометра.

Учитывая I1 и I2 в выражении (8), полученную выборку данных нормируют на среднее значение и вычитают постоянную составляющую. Поскольку вычитание постоянной составляющей производят после указанной нормировки, то это равносильно вычитанию единицы из нормированного значения.

Ввиду косинусоидальной зависимости интерферометрического отклика (8) производят линеаризацию отклика. Для этого из полученных данных вычисляют функцию Arccos, а поскольку в соответствии с выражением (7) второе слагаемое ΔϕИС смещает рабочую точку интерферометра на π/2 радиан, то дополнительно вычитают π/2. Принимая во внимание известное равенство текущий шаг демодуляции может быть также реализован вычислением функции Arcsin от полученных данных. Рассчитанный таким образом фазовый сигнал Ф, содержащий информацию о передаточной функции ФМ, имеет вид:

где - среднее значение сигнала

3) Поскольку функция интерференции периодична с периодом 2π, необходимо восстановить фазовый сдвиг первой точки отклика интерферометра, который в соответствии с сигналом модуляции М1 кратен 2π и составляет величину 2Δϕ1. Соответственно, первой точке полученных данных присваивают значение 2Δϕ1:

Ф[1]=2Δϕ1.

4) Вспомогательный сигнал модуляции М2 представляет собой меандр с периодом 2τ, смещающий рабочую точку интерферометра Саньяка в точки ±π/2, в которых функция косинуса имеет различный характер - в одном случае убывающий, а в другом возрастающий. Поэтому вследствие фазового сдвига интерферометра, вызванного передаточной функцией ФМ и внешними воздействиями на волоконный контур интерферометра, четные и нечетные отсчеты выборки данных смещены относительно нулевого значения с разным знаком. Таким образом, следующим шагом алгоритма демодуляции берут абсолютные значения выборки данных - |Ф|.

При воздействии на волоконный контур интерферометра Саньяка различных внешних факторов, таких как угловое вращение или магнитное поле, возникает наведенный фазовый сдвиг, пропорциональный величине данного воздействия ΔϕE в выражении (8). При измерении передаточной функции ФМ в интерферометре Саньяка такие воздействия на волоконный контур должны оставаться постоянными в течение всего измерения. Для исключения влияния ΔϕE на результаты измерения передаточной характеристики ФМ производят вычитание постоянной составляющей, обусловленной ΔϕE, получая тем самым реакцию ФМ на импульсное воздействие.

Полученную реакцию ФМ на импульсное воздействие амплитудой 2Δϕ1 нормируют на величину 2Δϕ1, тем самым получая импульсную характеристику ФМ, SФМ, - реакцию на единичное импульсное воздействие:

5) Полученную импульсную характеристику ФМ подвергают одному из известных методов идентификации передаточной функции, например, методу авторегрессии, определяя тем самым искомую передаточную функцию ФМ.

Чем больше порядок передаточной функции, тем точнее она определяет динамические свойства объекта, в данном случае ФМ интерферометра Саньяка. Следовательно, под точностью способа определения передаточной функции подразумевают порядок передаточной функции, с точностью до которого способ позволяет ее определить. В сравнении с прототипом, где передаточная функция ФМ определяется с точностью до первого порядка, ввиду ограничения, накладываемого количеством используемых компонентов аналогового фильтра, заявляемый способ позволяет определять искомую передаточную функцию ФМ с точностью до более высокого порядка, ввиду того, что ее определение производят по импульсной характеристике ФМ, полученной в цифровом виде с высоким разрешением. Таким образом, в заявляемом способе точность определения передаточной функции ФМ в интерферометре Саньяка определяется разрешающей способностью измерительной системы, используемой для получения импульсной характеристики ФМ, и выбранным методом идентификации передаточной функции.

Сущность заявляемого способа поясняется чертежами.

На Фиг. 1 показана структурная схема интерферометра Саньяка, дополненного блоком модуляции/демодуляции для измерения передаточной функции ФМ.

На Фиг. 2 показаны а) сигнал модуляции, подаваемый на электрический вход ФМ; б) идеальный фазовый сдвиг интерферометра Саньяка для описанного сигнала модуляции; в) фазовый сигнал Ф, рассчитанный из измеренноого сигнала интерферометра и содержащий информацию об импульсной характеристике ФМ; г) импульсная характеристика ФМ интерферометра Саньяка SФМ, полученная описанным способом.

Заявляемый способ может быть осуществлен с помощью устройства, представленного на фиг. 1. Устройство содержит источник оптического излучения 1, оптический X-разветвитель 2, оптический разветвитель 3 (X или Y типа), фазовый модулятор (ФМ) 4 и волоконный контур 5, которые вместе образуют интерферометр Саньяка или кольцевой интерферометр. Цепь регистрации оптического сигнала содержит фотоприемное устройство 6 и электрическую схему усиления 7. Блок модуляции/демодуляции 8 реализует алгоритм демодуляции сигнала, полученного от усилителя 7, и формирует сигнал модуляции, поступающий в электрическую схему усиления 9, с выхода которой сигнал подается на электрический вход ФМ 4. ФМ 4 может быть объединен с оптическим разветвителем 3 в единую многофункциональную интегрально-оптическую схему.

Заявляемый способ осуществляется следующим образом. Оптическое излучение от источника 1 поступает на вход Х-разветвителя 2 и далее на вход разветвителя 3, который обеспечивает разделение входящего излучения на два оптических пучка равной интенсивности, каждый из которых обходит волоконный контур 5 во встречных направлениях, а также модулируется по фазе при прохождении ФМ 4. Далее оба луча вновь объединяются в разветвителе 3, суммарный оптический пучок проходит через Х-разветвитель 2, после чего поступает на фотоприемное устройство 6, регистрирующее интерферометрический отклик интерферометра Саньяка, Sинт. Ток фотоприемного устройства 6 усиливается схемой усиления 7, сигнал с выхода которой попадает в блок модуляции/демодуляции 8, где зарегистрированный интерферометрический отклик подвергается описанному алгоритму демодуляции. Блок модуляции/демодуляции 8 формирует сигнал модуляции, представляющий сумму двух сигналов: меандра M1 (с амплитудой, соответствующей оптическому сдвигу фаз Δϕ1=Nπ (где N=1,2,3…), и с периодом Т, где Т/2 - время, достаточное для получения передаточной функции, причем Т >> τ, где τ - время обхода оптическим сигналом волоконного контура 5) и меандра М2 с амплитудой, соответствующей оптическому сдвигу фаз Δϕ2=π/4, и с периодом 2τ. Далее сформированный сигнал модуляции проходит через электрическую схему усиления 9 и попадает на электрический вход ФМ 4.

В результате описанного алгоритма демодуляции блок модуляции/демодуляции 8 вычисляет искомую передаточную функцию ФМ, НФМ.

В качестве конкретного примера предлагается способ измерения передаточной функции ФМ интерферометра Саньяка, в котором в качестве ФМ и оптического X-разветвителя (поз. 3 и 4 на фиг. 1) выступает многофункциональная интегрально-оптическая схема (МИОС), выполненная на основе монокристаллической пластины ниобата лития (LiNbO3) х-среза, канальные волноводы которой выполнены по технологии диффузии титана. В качестве источника оптического излучения выступает эрбиевый волоконный суперлюминесцентный источник с центральной длиной волны 1550 нм. В качестве оптического разветвителя (поз. 2 на фиг. 1) выступает волоконный Х-разветвитель с коэффициентом деления 50/50. Интерференционный оптический отклик с волоконно-оптического Х-разветвителя 2 поступает на фотоприемное устройство, в качестве которого выступает фотодиод PDI-80, и электрическую схему усиления, основанную на трансимпедансном усилителе ADA4817. Алгоритм демодуляции зарегистрированного интерферометрического отклика реализован в блоке модуляции/демодуляции, который представляет собой совокупность аналого-цифрового преобразователя с разрешением 18 бит, который преобразует аналоговый электрический сигнал с фотоприемного устройства и усилителя в цифровую форму, программируемой логической интегральной схемы, в которой реализованы алгоритмы демодуляции и формирования сигнала модуляции, а также цифро-аналогового преобразователя с разрешением 20 бит, который преобразует цифровой сигнал в аналоговый электрический сигнал, который подается на вход электрической схемы усиления, с выхода которой поступает на электрический вход ФМ.

На фиг. 2. показаны сигналы, полученные экспериментальным путем в соответствии с предложенным способом. На основе импульсной характеристики (фиг. 2, г) с помощью авторегрессионного метода была вычислена передаточная функция ФМ. Полученная передаточная функция ФМ, используемого в измерениях, представленных на фиг. 2, имеет вид фильтра нижних частот шестого порядка:

Таким образом, заявляемый способ позволяет определять передаточную функцию ФМ в интерферометре Саньяка с повышенной точностью.

Способ определения передаточной функции фазового модулятора в интерферометре Саньяка, включающий подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда которого обеспечивает сдвиг рабочей точки интерферометра на линейный участок интерферометрической функции, и измерение полученного сигнала интерферометра, который используют для определения передаточной функции фазового модулятора, отличающийся тем, что на электрический вход фазового модулятора одновременно со вспомогательным сигналом подают второй управляющий сигнал напряжения в форме меандра с амплитудой, соответствующей оптическому сдвигу фаз Δϕ=Nπ (где N=1,2,3…), и с периодом Т >> τ, где τ - время обхода оптическим сигналом волоконно-оптического контура интерферометра Саньяка, и измеряют полученный сигнал интерферометра S, по которому рассчитывают фазовый сигнал где где - среднее значение сигнала K=T/τ - количество отсчетов длительностью τ в периоде T сигнала S, k=(1…K/2] - порядковый номер отсчета сигнала N - количество периодов Т в сигнале S, =[1…N] - порядковый номер периода, причем Ф[1]=2Δϕ, а из фазового сигнала Ф рассчитывают импульсную характеристику фазового модулятора S согласно выражению и, подвергая полученную импульсную характеристику методу идентификации передаточной функции, определяют искомую передаточную функцию фазового модулятора интерферометра Саньяка.
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Способ определения передаточной функции фазового модулятора в интерферометре Саньяка
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
04.11.2019
№219.017.de8e

Способ изготовления неорганических перовскитных нановискеров типа cspbbr

Изобретение относится к области синтеза наноструктур на основе перовскитов, которые могут быть использованы в качестве материалов для нанофотоники для создания Фабри-Перо наносенсоров и фотонных интегральных схем. Способ изготовления неорганических перовскитных нановискеров типа CsPbBr включает...
Тип: Изобретение
Номер охранного документа: 0002705082
Дата охранного документа: 01.11.2019
24.11.2019
№219.017.e5c6

Устройство для сушки суспензий

Изобретение относится к химической и пищевой отраслям промышленности и может быть использовано при производстве сухих дисперсных материалов, в частности пищевого назначения, например сухого молока, наноинкапсулированных комплексных биологически активных ингредиентов или пектина. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002707022
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e5ff

Способ идентификации гидродинамических параметров тела

Изобретение относится к области гидродинамики, измерительной технике, лабораторным установкам, судостроению. Способ заключается в том, что телу в виде корпуса судна, погруженному в жидкость по ватерлинию, или с заданной осадкой, с установленным на корпусе судна управляемым электродвигателем с...
Тип: Изобретение
Номер охранного документа: 0002706909
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.edb0

Способ измерения интенсивности ультразвукового поля в жидкости

Использование: для определения интенсивности ультразвукового поля в жидкости. Сущность изобретения заключается в том, что в ванну с исследуемой жидкостью торцом к излучателю ультразвуковых колебаний, установленному в ванне, частично погружают оптически прозрачную измерительную камеру,...
Тип: Изобретение
Номер охранного документа: 0002708933
Дата охранного документа: 12.12.2019
27.12.2019
№219.017.f37e

Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток. Прозрачный электрод с асимметричным пропусканием света,...
Тип: Изобретение
Номер охранного документа: 0002710481
Дата охранного документа: 26.12.2019
09.02.2020
№220.018.0122

Способ встраивания биометрической информации в цветное изображение лица и устройство для осуществления способа

Изобретение относится к способу встраивания биометрической информации в цветные изображения лиц и устройству для осуществления способа. Техническим результатом является повышение универсальности, защищенности информации и надежности ее хранения в процессе обменных операций с памятью. Способ...
Тип: Изобретение
Номер охранного документа: 0002713762
Дата охранного документа: 07.02.2020
29.02.2020
№220.018.0799

Экструдер

Изобретение относится к пищевой промышленности и может быть использовано при производстве экструдированных пищевых продуктов. Экструдер содержит корпус, камеру прессования, матрицу, камеру измельчения с загрузочным бункером, распылительными форсунками и ножом, шнек и диск. Шнек выполнен сборным...
Тип: Изобретение
Номер охранного документа: 0002715394
Дата охранного документа: 27.02.2020
02.03.2020
№220.018.07df

Фотоактивная суспензия

Изобретение относится к материалам, используемым для решения экологических проблем, в медицине и санитарии, и может быть использовано для удаления органических примесей. Фотоактивная суспензия, включающая частицы оксида цинка, воду и аммиачную воду, дополнительно содержит нитрат цинка при...
Тип: Изобретение
Номер охранного документа: 0002715417
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07e6

Способ определения концентрации свинца (ii) в водных образцах

Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем...
Тип: Изобретение
Номер охранного документа: 0002715478
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0811

Датчик искрения

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках искрения и электрической дуги и предназначено для использования на электростанциях, в высоковольтных установках, на линиях электропередачи, на пожаро- и взрывоопасных предприятиях химической и...
Тип: Изобретение
Номер охранного документа: 0002715477
Дата охранного документа: 28.02.2020
Показаны записи 1-10 из 12.
10.01.2015
№216.013.1e16

Волоконно-оптическое устройство для измерения напряженности электрического поля

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной...
Тип: Изобретение
Номер охранного документа: 0002539130
Дата охранного документа: 10.01.2015
20.04.2015
№216.013.42b4

Способ измерения сигнала волоконно-оптического интерферометрического фазового датчика

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических фазовых датчиках интерферометрического типа. При измерении сигнала датчика в ступенчатый пилообразный модулирующий сигнал добавляют один скачок напряжения за его период, амплитуда скачка равна...
Тип: Изобретение
Номер охранного документа: 0002548574
Дата охранного документа: 20.04.2015
12.01.2017
№217.015.635d

Волоконно-оптический гироскоп

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических гироскопах интерферометрического типа. Технический результат заключается в компенсации оптических шумов источника излучения, а также уменьшении дрейфа сигнала ВОГ за счет уменьшения амплитуды волн...
Тип: Изобретение
Номер охранного документа: 0002589450
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8472

Способ контроля спектральных параметров волоконной брэгговской решетки

Изобретение относится к области волоконной оптики и касается способа контроля спектральных параметров волоконной брэгговской решетки (ВБР). Способ включает в себя облучение ВБР излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором (VCSEL), измерение отраженного...
Тип: Изобретение
Номер охранного документа: 0002602998
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.e371

Способ повышения точности волоконно-оптического гироскопа с закрытым контуром

Изобретение относится к области приборостроения и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных на основе интерферометра Саньяка. Технический результат - повышение точности. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002626228
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e3f7

Способ повышения точности волоконно-оптического гироскопа с закрытым контуром

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных по схеме интерферометра Саньяка. Технический результат – повышение точности...
Тип: Изобретение
Номер охранного документа: 0002626019
Дата охранного документа: 24.07.2017
04.04.2018
№218.016.36a7

Способ частотно-импульсной модуляции полупроводникового лазерного источника оптического излучения для опроса оптических интерферометрических датчиков

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования...
Тип: Изобретение
Номер охранного документа: 0002646420
Дата охранного документа: 05.03.2018
20.06.2018
№218.016.6445

Способ записи брэгговской решётки лазерным излучением в двулучепреломляющее оптическое волокно

Изобретение относится к волоконно-оптическим технологиям, в частности к процессу формирования волоконных брэгговских решеток (ВБР) в световедущей части двулучепреломляющих оптических волокон (ОВ). В способе записи брэгговской решетки лазерным излучением в двулучепреломляющее оптическое волокно,...
Тип: Изобретение
Номер охранного документа: 0002658111
Дата охранного документа: 19.06.2018
02.02.2019
№219.016.b676

Способ определения разницы длин плеч в двухлучевом волоконно-оптическом интерферометре

Изобретение относится к области волоконно-оптических измерительных приборов. Способ определения разницы длин плеч в двухлучевом волоконно-оптическом интерферометре заключается в формировании направляемого в двухлучевой волоконно-оптический интерферометр частотно-модулированного оптического...
Тип: Изобретение
Номер охранного документа: 0002678708
Дата охранного документа: 31.01.2019
09.05.2019
№219.017.4faa

Волоконно-оптический датчик тока

Изобретение относится к области волоконно-оптических измерительных устройств и может быть использовано в интерференционных волоконно-оптических датчиках тока. Волоконно-оптический датчик тока содержит оптически соединенные источник светового излучения, разветвитель, ко второму входу которого...
Тип: Изобретение
Номер охранного документа: 0002433414
Дата охранного документа: 10.11.2011
+ добавить свой РИД