×
14.12.2019
219.017.edb0

Способ измерения интенсивности ультразвукового поля в жидкости

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения интенсивности ультразвукового поля в жидкости. Сущность изобретения заключается в том, что в ванну с исследуемой жидкостью торцом к излучателю ультразвуковых колебаний, установленному в ванне, частично погружают оптически прозрачную измерительную камеру, выполненную из монодисперсного пористого стекла с размерами пор, по крайней мере, на порядок меньше длины волны оптического излучения, которое пропускают через измерительную камеру. Под действием ультразвукового капиллярного эффекта жидкость проникает в поры измерительной камеры и изменяет ее показатель преломления. По изменению показателя преломления за определенное время находят скорость его изменения и по тарировочной кривой рассчитывают интенсивность ультразвука. Технический результат: повышение точности измерения интенсивности ультразвукового поля в жидкости при атмосферном давлении. 1 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике и может быть использовано для определения интенсивности ультразвукового поля.

Известен способ измерения интенсивности ультразвукового поля в жидкости путем определения кавитационной энергии в ультразвуковой ванне [патент RU №2502966, МПК G01H 3/00, дата приоритета 22.08.2008, дата публикации 27.12.2013], оборудованной низкочастотным источником ультразвука, включающий следующие этапы: заполнение измерительной камеры заданным объемом измерительной жидкости, расположение измерительной камеры в заполненной жидкостью ультразвуковой ванне, приведение в работу источника ультразвука ультразвуковой ванны, определение появляющегося увеличения объема измерительной жидкости в измерительной камере и оценка кавитационной энергии по величине увеличения объема измерительной жидкости в измерительной камере. Недостатком аналога является низкая точность измерений интенсивности ультразвуковых колебаний из-за потерь энергии в стенках измерительной камеры, поскольку измеряемая в ванне жидкость и измерительная жидкость в камере разделены перегородкой.

Известен способ измерения интенсивности ультразвукового поля, описанный в индикаторе ультразвука [патент RU №2312312, МПК G01H 9/00, дата приоритета 19.04.2005, дата публикации 27.10.2006, в котором измерительную камеру с оптически прозрачной крышкой, и содержащую элетрооптическую жидкость, освещают лучом света, падающим под углом к прозрачной крышке, действуют измеряемым ультразвуком на другую крышку измерительной камеры, представляющую собой пьезокристалл, пьезоэлектричеством изменяют коэффициент преломления электрооптической жидкости для падающего луча, по изменению цвета отраженного луча определяют интенсивность ультразвуковых колебаний. Недостатком аналога является низкая точность измерений интенсивности ультразвуковых колебаний, поскольку по изменению цвета отраженного луча трудно определить изменение интенсивности. Практически в аналоге определяется только наличие или отсутствие ультразвуковых колебаний, без его численных характеристик.

Известен также способ измерения интенсивности ультразвукового поля в жидкости [авторское свидетельство СССР №1196696, МПК G01H 3/00, дата приоритета 11.07.83, дата публикации 0.12.85], выбранный за прототип и заключающийся в том, что устанавливают капилляр в исследуемой среде, возбуждают ультразвуковые колебания и увеличивают давление в капилляре, возбуждают кавитацию под торцом капилляра и измеряют максимальную скорость поднятия жидкости от интенсивности ультразвукового поля при увеличении давления в капилляре, по которой с учетом тарировочной зависимости максимальной скорости поднятия жидкости по капилляру от интенсивности ультразвукового поля определяют искомый параметр. Недостатком прототипа является низкая точность измерений, обусловленная необходимостью создания компрессором определенной величины давления в капилляре перед измерениями и поддержание давления постоянным в процессе измерения. Отсутствие компрессора, а, следовательно, и определенного давления, приводит к том, что при больших интенсивностях ультразвука при атмосферном давлении жидкость переполняет капилляр, выплескивается через верхний торец, и измерения становятся невозможными. В этом случае для увеличения диапазона измерений необходимо увеличивать длину капилляра, что приводит к громоздкости устройства измерения. Кроме того, при кавитации столб жидкости в капилляре может быть разделен пузырьками воздуха. Их количество и размеры являются случайной величиной, и высота подъема жидкости в капилляре при одной и той же интенсивности ультразвуковых колебаний, будет иметь случайную погрешность. Дифференцирование высоты подъема для определения скорости, в том числе, максимальной, тем более приводит к большой случайной погрешности измерений.

Технический результат заявленного решения заключается в повышении точности измерения интенсивности ультразвукового поля в жидкости при атмосферном давлении.

Сущность способа измерения интенсивности ультразвукового поля в жидкости заключается в том, что устанавливают капиллярную измерительную камеру в исследуемой среде, возбуждают ультразвуковые колебания, возбуждают кавитации под торцом капиллярной измерительной камеры, измеряют скорости движения жидкости в капиллярной измерительной камере и определяют искомый параметр по тарировочной зависимости скорости движения жидкости в капиллярной измерительной камере от интенсивности ультразвукового поля, при этом скорость движения жидкости в прозрачной капиллярно-пористой измерительной камере с размером пор, по крайней мере, на порядок меньше длины волны излучения, которое пропускают через прозрачно-пористую измерительную камеру, определяют по скорости изменения показателя преломления измерительной камеры для пропускаемого излучения. Тот же технический результат достигается тем, что скорость изменения показателя преломления определяют по скорости изменения фокусного расстояния измерительной камеры.

Сущность изобретения заключается в том, что измеряют не скорость подъема жидкости в капилляре, а скорость заполнения жидкостью множества пор в капиллярно-пористом материале прозрачного оптического элемента, образующего измерительную камеру. Можно сказать, что единственный капилляр прототипа заменяют хаотическим множеством капилляров, общая протяженность которых существенно превышает протяженность одного капилляра прототипа. Объем измерительной камеры при похожих линейных размерах получается существенно больше, следовательно, можно измерять более интенсивные ультразвуковые колебания, которые накачивают больше жидкости в измерительную камеру, причем при атмосферном давлении, в отличие от прототипа. При множестве капилляров-пор случайная погрешность от возможных пузырьков воздуха в порах усредняется интегрированием. Действительно, информационная характеристика - скорость заполнения объема пор жидкостью является двойным интегралом по пространству от скорости подъема жидкости в капилляре. Поэтому случайная составляющая погрешности при измерении одной и той же интенсивности становится меньше.

Сущность изобретения поясняется фигурой, на которой представлена конструкция устройства, реализующего заявленный способ измерения.

На фигуре введены следующие обозначения:

1 - ванна, 2 - исследуемая среда, 3 - излучатель ультразвуковых колебаний, 4 - измерительная камера в форме капиллярно-пористой линзы, 5 - источник оптического излучения, 6 - фотоприемник.

Устройство содержит ванну 1 с исследуемой средой 2, излучатель ультразвуковых колебаний 3, расположенный в ванне 1 под торцом измерительной камеры 4, частично погруженной в исследуемую среду 2, и выполненной в форме оптического элемента, например, фокусирующей линзы 4, из оптически прозрачного капиллярно-пористого материала с размерами пор, по крайней мере, на порядок меньше длины волны излучения источника оптического излучения 5, на оптической оси которого последовательно установлены измерительная камера 4 и фотоприемник 6.

Перед началом измерений интенсивности ультразвукового поля определяют фокусное расстояние сухой линзы 4. Для этого включают источник оптического излучения 5, например, лазер и пропускают излучение через линзу 4 на фотоприемник 6, определяя ее фокусное расстояние F. Затем торец линзы 4 погружают в исследуемую среду 2 и включают излучатель ультразвуковых колебаний 3, расположенный под торцом линзы 4. Одновременно включают таймер для измерения времени процесса.

Из-за ультразвукового капиллярного эффекта и абсорбции жидкость исследуемой среды 2 заполняет поры линзы 4, изменяя ее показатель преломления. Чем больше пор заполнено жидкостью, тем больше показатель преломления, и тем меньше фокусное расстояние F линзы 4. Поскольку размеры пор линзы 4, по крайней мере, на порядок меньше длины волны источника оптического излучения 5, то явления интерференции и дифракции на порах линзы практически не сказываются, т.е. линза 4 для оптического излучения представляет однородное оптическое тело с изменяемым показателем преломления.

Линза 4 выполнена из монодисперсного пористого стекла с размером пор (максимум распределения размеров) 40 нм, что в 10-17,5 раза меньше длины волны излучения рабочего диапазона (оптический диапазон видимого спектра 400-700 нм). Пористое стекло получают по известной технологии путем выщелачивания натрий-бор-силикатной основы с образованием пористой матрицы, содержащей до 95-98 вес.% SiO2. Суммарный объем пор в таком стекле составляет примерно 25-30%. При заполнении пор только воздухом эквивалентный показатель преломления системы стекло-воздух =1,35, при заполнении пор водой эквивалентный показатель преломления =1,37. Фокусное расстояние F однолинзового объектива определяется по формуле

где R1, R2 - радиусы кривизны поверхностей линзы, - показатель преломления материала линзы

Для R1=R2=400 мм фокусное расстояние для воздушного заполнения составит 285,7 мм, для водяного заполнения 270,2 мм. Таким образом, фокусное расстояние для полного заполнения пор водой меняется на ΔF=15,5 мм.

После полного заполнения пор линзы 4, выключают излучатель 3 ультразвукового излучения и засекают таймером время Т заполнения линзы 4 жидкостью. При делении величины ΔF на Т получают скорость изменения фокусного расстояния и по тарировочной зависимости между скоростью изменения фокусного расстояния и интенсивностью ультразвуковых колебаний определяют искомый параметр.

После завершения измерений линзу 4 вынимают из ванны 1 и осушают ультразвуковыми колебаниями и горячим воздухом.

Таким образом, заявляемое техническое решение позволяет повысить точность измерения интенсивности ультразвукового поля в жидкости при атмосферном давлении.


Способ измерения интенсивности ультразвукового поля в жидкости
Способ измерения интенсивности ультразвукового поля в жидкости
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
04.11.2019
№219.017.de8e

Способ изготовления неорганических перовскитных нановискеров типа cspbbr

Изобретение относится к области синтеза наноструктур на основе перовскитов, которые могут быть использованы в качестве материалов для нанофотоники для создания Фабри-Перо наносенсоров и фотонных интегральных схем. Способ изготовления неорганических перовскитных нановискеров типа CsPbBr включает...
Тип: Изобретение
Номер охранного документа: 0002705082
Дата охранного документа: 01.11.2019
24.11.2019
№219.017.e5c6

Устройство для сушки суспензий

Изобретение относится к химической и пищевой отраслям промышленности и может быть использовано при производстве сухих дисперсных материалов, в частности пищевого назначения, например сухого молока, наноинкапсулированных комплексных биологически активных ингредиентов или пектина. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002707022
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e5ff

Способ идентификации гидродинамических параметров тела

Изобретение относится к области гидродинамики, измерительной технике, лабораторным установкам, судостроению. Способ заключается в том, что телу в виде корпуса судна, погруженному в жидкость по ватерлинию, или с заданной осадкой, с установленным на корпусе судна управляемым электродвигателем с...
Тип: Изобретение
Номер охранного документа: 0002706909
Дата охранного документа: 21.11.2019
27.12.2019
№219.017.f37e

Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток. Прозрачный электрод с асимметричным пропусканием света,...
Тип: Изобретение
Номер охранного документа: 0002710481
Дата охранного документа: 26.12.2019
09.02.2020
№220.018.0122

Способ встраивания биометрической информации в цветное изображение лица и устройство для осуществления способа

Изобретение относится к способу встраивания биометрической информации в цветные изображения лиц и устройству для осуществления способа. Техническим результатом является повышение универсальности, защищенности информации и надежности ее хранения в процессе обменных операций с памятью. Способ...
Тип: Изобретение
Номер охранного документа: 0002713762
Дата охранного документа: 07.02.2020
29.02.2020
№220.018.0799

Экструдер

Изобретение относится к пищевой промышленности и может быть использовано при производстве экструдированных пищевых продуктов. Экструдер содержит корпус, камеру прессования, матрицу, камеру измельчения с загрузочным бункером, распылительными форсунками и ножом, шнек и диск. Шнек выполнен сборным...
Тип: Изобретение
Номер охранного документа: 0002715394
Дата охранного документа: 27.02.2020
02.03.2020
№220.018.07df

Фотоактивная суспензия

Изобретение относится к материалам, используемым для решения экологических проблем, в медицине и санитарии, и может быть использовано для удаления органических примесей. Фотоактивная суспензия, включающая частицы оксида цинка, воду и аммиачную воду, дополнительно содержит нитрат цинка при...
Тип: Изобретение
Номер охранного документа: 0002715417
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07e6

Способ определения концентрации свинца (ii) в водных образцах

Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем...
Тип: Изобретение
Номер охранного документа: 0002715478
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0811

Датчик искрения

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках искрения и электрической дуги и предназначено для использования на электростанциях, в высоковольтных установках, на линиях электропередачи, на пожаро- и взрывоопасных предприятиях химической и...
Тип: Изобретение
Номер охранного документа: 0002715477
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0830

Способ определения передаточной функции фазового модулятора в интерферометре саньяка

Изобретение относится к области волоконной оптики. Способ определения передаточной функции фазового модулятора в интерферометре Саньяка включает подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда...
Тип: Изобретение
Номер охранного документа: 0002715479
Дата охранного документа: 28.02.2020
Показаны записи 1-4 из 4.
10.06.2014
№216.012.ceb2

Способ управления инерционным приводом антенны

Изобретение относится к технике пространственного наведения и сопровождения подвижных точечных объектов. Технический результат - повышение надежности захвата цели в случае редких посылок зондирующих импульсов и точности слежения за быстро летящей точечной целью. Способ управления инерционным...
Тип: Изобретение
Номер охранного документа: 0002518685
Дата охранного документа: 10.06.2014
26.08.2017
№217.015.e459

Способ хаотического обзора пространства в оптической локационной системе

Изобретение относится к технике пространственного поиска подвижных точечных объектов и используется в оптических локационных системах с редкими посылками зондирующих импульсов за период сканирования. Достигаемый технический результат - повышение вероятности обнаружения цели и скрытности работы...
Тип: Изобретение
Номер охранного документа: 0002626245
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e475

Способ оперативной оценки спектральных характеристик чувствительности цифровых фотокамер

Изобретение относится к области оптических измерений и касается способа оперативной оценки спектральных характеристик чувствительности цифровых фотокамер. Способ заключается в том, что размещают в плоскости тестового объекта несколько излучающих диодов, имеющих различные спектральные...
Тип: Изобретение
Номер охранного документа: 0002626575
Дата охранного документа: 28.07.2017
05.07.2018
№218.016.6bed

Способ оперативной точной оценки спектральных характеристик чувствительности цифровых фотокамер

Изобретение относится к области оптических измерений и касается способа оперативной оценки спектральных характеристик чувствительности цифровых фотокамер. Способ заключается в том, что размещают в плоскости тестового объекта несколько излучающих диодов, имеющих различные спектральные...
Тип: Изобретение
Номер охранного документа: 0002659898
Дата охранного документа: 04.07.2018
+ добавить свой РИД