×
29.12.2018
218.016.ad22

Результат интеллектуальной деятельности: Способ деконтаминации питательных сред для культивирования животных клеток in vitro

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и биотехнологии и предназначено для культивирования животных клеток in vitro при производстве вирус-вакцин. Способ деконтаминации питательных сред для культивирования животных клеток in vitro состоит в том, что предварительно перед облучением питательные среды подвергают термической обработке путем нагревания до температуры 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×10 Гр гамма-лучами. Использование изобретения позволяет повысить эффективность деконтаминации питательных сред для культивирования животных клеток in vitro. 4 пр.

Изобретение относится к биотехнологии и может быть использовано при производстве вирус вакцин.

Известен способ деконтаминации питательных сред с использованием антибиотиков - бензилпенициллина, стрептомицина и канамицина по 100 Ед/мл (см. кн. Животная клетка в культуре // Методы и применение в биотехнологии / Под общ. ред. проф. Дьяконова Л.П. - М.: Издательство "Спутник+", 2009. - с. 423).

Известен также способ деконтаминации перевиваемых линий клеток ПГ-80 и СПЭВ с использованием ПАВ (этоний) в дозе 7,5 мкг/мл с тетрациклином (50 мкг/мл) и канамицином (250 мкг/мл).

Общим недостатком указанных способов деконтаминации питательных сред и культур клеток является, во-первых, токсичность используемых деконтаминантов (антибиотиков) для культур клеток и, во-вторых, привыкание к известным антибиотикам, что ведет к снижению эффективности их применения.

Между тем из области радиационной микробиологии известно бактерицидное действие ионизирующих излучений. Последующие исследования радиобиологов показали возможность практического использования бактерицидного действия радиации для стерилизации различных изделий медицинского назначения.

Стерилизация (деконтаминация), проводимая с помощью ионизирующего излучения, получила название радиационной или лучевой стерилизации. Ввиду того, что лучевая деконтаминация проводится без высокой температуры, она была названа также холодной стерилизацией.

Благодаря высокой проникающей способности гамма - излучения радиоактивных изотопов и других видов ионизирующего излучений, оказалось возможными стерилизовать медицинскую продукцию (лекарственные средства, шприцы, кетгут, шовный материал, посуду, сыворотки крови, питательные среды и т.д.) в промышленных масштабах. Используемые для радиационной стерилизации дозы излучения рассчитаны на бактерицидной эффект, гарантирующий надежное обеспечение деконтаминации.

Действие ионизирующей радиации на живую клетку (животную, растительную, микробную) основано на разложении (радиолиз) молекул воды, содержащейся в живых клетках, на ионы H2O+ и H2O-, которые, расщепляясь на свободные радикалы Н- и ОН-, обладают высокой токсичностью. Последние, взаимодействия с живой клеткой, вызывают глубокие изменения (распад ДНК, нуклеиновых кислот, ферментов, полисахаридов, пептидов, аминокислот, липидов, белков), которые приводят к разрушению и гибели клетки, что дает возможность использования их для инактивации животных, растительных и микробных клеток.

Учитывая перспективность использования ионизирующих излучений в медицине, в 1960-1970 гг. были проведены радиомикробиологические исследования в этой области, результаты которых показали, что облучение питательных сред гамма-лучами в дозах 10-30 кГр обеспечивает абсолютную стерильность питательных сред (см. кн. М.А. Туманяна и Д.А. Каушанского "Радиационная стерилизация". - М.: Медицина, 1974. - С. 66-91).

Наиболее близким к предлагаемому является способ деконтаминации сухих питательных сред (среда 199, среда Игла, гидролизата лактоальбумина-ГЛА, версена, Дульбекко, трипсина) с использованием деконтаминанта физической природы - гамма-лучей в дозах (1,5-6,5)×104 Гр (см. статью И.Д. Сперанской "Радиационная стерилизация питательных сред" // Сб. научн. тр. ИЭМ им. Н.Ф. Гамалеи. - М., 1977. С. 67-68).

Несмотря на то, что питательные среды, простерилизованные (деконтаминированные) гамма-лучами, хотя и не утрачивали биологических свойств, необходимых для культур клеток, однако используемые для деконтаминации дозы гамма лучи очень высокие, а это приводит к увеличению времени облучения. Так, если мощность экспозиционной дозы излучения используемых радиационных установок не превышает 10 Р/мин, то для полной стерилизации питательных сред в дозах 1,5-60 кГр необходимо 14 часов непрерывного облучения, а это создает довольно серьезную как техническую задачу, так и радиационную опасность для обслуживающего персонала. Поэтому возникает необходимость поиска менее жестких условий облучения стерилизуемых (деконтаминируемых) питательных сред.

Известно, что одним из существенных факторов повышения эффективности радиостерилизации (радиодеконтаминации) является использование комбинированного радиационно-термического воздействие на микроорганизмы.

Так, на примере спорообразующего микроорганизма - возбудителя ботулизма (Cl. botulnus) установлено, что прогревание спор возбудителя резко повышает гибель микробных клеток (см. кн. М.А. Туманяна, Д.А. Каушанского - "Радиационная стерилизация". - М.: Медицина, 1974. - С. 30-31). Эти данные подтверждают гипотезу, согласно, который низкая температура снижает образование окисленных веществ и диффузию их к чувствительным участкам клетки, а предварительный нагрев питательных сред перед облучением может существенно снизить радиорезистентность бактерий, усиливая их бактерицидное действие.

Полученные данные позволяют предположить их синергетическое действие на фоне комбинированного воздействия - температуры и ионизирующего излучения. О действии губительных доз радиации в комбинации с температурным воздействием существует несколько гипотез. Согласно одной из них, нагревание приводит молекулы в состояние возбуждения, что усиливает действие радиации, облегчая денатурацию белков клетки; согласно другой - усиление действия радиации при одновременном нагревании объясняется проявлением кислородного эффекта, при этом кислород соединяется со свободными радикалами, образуя комплексы, смертельные для клеток (см. кн. M.A. Tumanjan. - Radiosterilisation of Meniral Products - IAEA, Vienna, 1967. - P. 199). Можно предположить, что при этом имеют место изменения химических реакций, которые возникают в клетке при повышении или понижении температуры, в результате которых образуются вещества, которые повреждают или защищают важные компоненты клетки, что способствует усилению действия радиации.

Вышеизложенное явилось основанием для проведения исследований по разработке способа деконтаминации питательных сред для культивирования клеток in vitro с использованием комбинированного термо-радиационного метода обработки питательных сред.

Задачей изобретения является разработка способа, обеспечивающего эффективную деконтаминацию питательных сред, используемых в биотехнологии для культивирования клеток животных in vitro с целью получения на них вирус - вакцин и позволяющего снизить дозы, время облучения и обеспечить радиационную безопасность обслуживающего персонала.

Поставленная задача решается тем, что в способе деконтаминации питательных сред для культивирования животных клеток in vitro, предусматривающим облучение их гамма-лучами, предварительно перед облучением питательные среды подвергают термической обработке путем нагрева до температуры 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×103 Гр. Способ осуществляют следующим образом.

Питательные среды различного состава (безбелковые: синтетические 199, минимальные - MEM), белковые: гидролизат лактоальбумина - ГЛА, сыворотка крупного рогатого скота - (СКРС), наиболее часто применяемые в биотехнологии для культивирования животных клеток in vitro с целью изготовления на их основе вирусвакцин, разливают во флаконы по 100-200 см3, и предварительно перед облучением подвергают термическому воздействию путем нагревания в сушильном шкафу или на водяной бане до температуры 55-60°С в течение 25-30 мин. По истечении указанной экспозиции подогретые питательные среды подвергают облучению в дозах (0,8-1,5)×103 Гр путем облучения на гамма установке "Исследователь" с источником излучения 60Со при мощности дозы излучения 3,45×102 А/кг. Подвергнутые комбинированному термо-радиационному воздействию питательные среды проверяют на стерильность путем высева их на бактериологические среды: мясопептонный бульон - МПБ и мясопептонный агар - МПА в количестве 0,5 мл, посевы культивируют в течение 7 сут, проводя ежедневные просмотры посевов, регистрируя количество выросших колоний на бактериологических средах.

Степень деконтаминации подвергнутых термо-радиационному воздействию питательных сред определяют по наличию или отсутствию роста микроорганизмов в бактериологических средах.

Способ деконтаминации питательных сред для культивирования животных клеток in vitro иллюстрируется следующими примерами.

Пример 1. Определение оптимальной дозы гамма-лучей, обеспечивающей деконтаминацию питательных сред при спонтанной (случайной) контаминации их микроорганизмами.

Учитывая, что питательные среды в технологическом процессе (при транспортировке, длительном хранении, нарушении стерильности в процессе подготовки к использовано и т.д.) могут быть контаминированы различными видами микроорганизмов: бактерии, кокки, грибы, микоплазмы, проводили опыты по определенно оптимальной стерилизирующей (деконтаминирующей) дозы гамма-лучей.

Для этой цели использовали безбелковые (синтетическую среду 199 и минимальную среду - MEM) и белковые (сыворотку крупного рогатого скота - СКРС и гидролизат лактоальбумина - ГЛА) питательные среды, которые разливали во флаконы, закупоривали резиновыми пробками и размещали в облучательную камеру гамма-установки "Исследователь" и подвергали облучению в дозах 5×102, 1×103, 2×103, 4×103, 8×103, 1×104, 1,5×104, 2×104 Гр. Облученные в вышеуказанных дозах питательные среды подвергали бактериологическими исследованиям путем высева проб из каждой среды по 1 мл на мясо-пептонный агар (МПА) и мясопептонный бульон (МПБ) с последующим термостатированием бактериальных сред в течение 7 суток и с последующей регистрацией количества выросших колоний.

Степень деконтаминации облученных питательных сред определяли путем микроскопирования препаратов по наличию или отсутствию роста микроорганизмов в исследуемых пробах.

Установлено, что в пробах из безбелковых питательных, облученных в дозах 0,8×103, 1,0×104 и 1,5×104 Гр роста микроорганизмов не наблюдалось, в то время как в пробах, из питательных сред, облученных в дозах 1×103, 5×102, 2×103, 4×103 Гр обнаружен рост единичных колоний микроорганизмов.

Результаты параллельных микробиологических исследований по радиодеконтаминации белковых питательных сред (СКРС, ГЛА) показали, что надежная стерилизация их наступала при облучении в дозах 1,5×104 - 2×104 Гр.

Следовательно, надежное обеззараживание (деконтаминация) безбелковых и белковых питательных сред при случайной контаминации их микроорганизмами достигается при облучении их гамма-лучами в дозах 8×103 - 2×104 Гр.

Пример 2. Определение оптимальных деконтаминирующих доз гамма-лучей при искусственной контаминации питательных сред аспорогеными и спорогенными видами микроорганизмов.

Поскольку при спонтанной (случайной) контаминации питательных сред концентрация микробных клеток может быть весьма низкой (единичные колонии), в определенных условиях (нарушение условий хранения, нарушение стерильности при хранении, отключение холодильников, попадание влаги в емкости и т.д.), попавшие в питательные среды контаминанты, активно размножаясь в питательных средах (особенно - в белковых), могут создать высокую концентрацию микробов, что диктует необходимость подбора оптимальных режимов деконтаминации.

С учетом изложенного, были поставлены опыты радиационной деконтаминации питательных сред при их искусственной контаминации аспорогенными и спорогенными микроорганизмами, обладающими различной радиорезистентностью.

Для этой цели, питательные среды, указанные в примере 1, подвергали искусственной контаминации путем внесения в питательные среды аспорогенных (St. aureus) и спорогенных (B. subtilis) микроорганизмов, обладающих высокой и весьма высокой резистентностью по отношению к химическим (антибиотики, дезинфектанты) и физическим (ионизирующие излучения) агентам. Искусственную контаминацию питательных сред проводили путем внесения вышеуказанных микроорганизмов в питательные среды в концентрации 1×107 микробных клеток на 1 мл питательной среды. Облучение искусственно контаминированных питательных сред (199, MEM, ГЛА и СКРС) проводили в дозах гамма-лучей 1,0×104, 2,0×104 и 3,0×104 Гр. Дальнейшую обработку питательных сред, микробиологические исследования и определение степени деконтаминации питательных сред проводили согласно примеру 1.

Установлено, что надежная деконтаминация искусственно контаминированных питательных сред, контаминированных St. aureus, достигалась при облучении их гамма-лучами в дозах 1×104 - 2×104 Гр (среда 199, MEM, ГЛА и СКРС) и 3×104 Гр (все среды контаминированные B. subtilis.

Следовательно, надежное обеззараживание (деконтаминация) питательных сред, контаминированных аспорогенной микрофлорой (St. aureus) достигается при облучении гамма-лучами в дозах (1-2)×104 Гр, а контаминированных радиорезистентными спорогенными микроорганизмами (B. subtilis) - при облучении в дозах (2-3,0)×104 Гр.

Пример 3. Изучение комбинированного действия повышенной температуры и ионизирующего излучения на наиболее вероятные контаминанты питательных сред.

Учитывая, что наиболее часто встречающимися контаминантами питательных сред являются стафилококки, кишечная палочка и сенная палочка, проводили опыты с культурой стафилококков, обладающих значительной термо-, химио-, радиорезистентностью.

Для этой цели готовили взвесь клеток St. aureus на физиологическом растворе, содержащую 1×107 стафилококков в 1 мл. Облучение клеток производили гамма-излучением 60Со в дозах 0,8×103 Гр, 1,0×103 Гр, 1,5×103 Гр. Одновременно флаконы с бактериями нагревали в сушильном шкафу при 45°, 50°, 55° и 60°С в течение 15, 20 и 30 мин. Эффективность комбинированного терморадиационного метода воздействия на испытуемые микробы определяли по выживаемости стафилококков путем учета выросших на питательном агаре в чашках Петри колоний.

Установлено, что полный бактерицидный эффект для 100% микробов наступал при предварительном нагревании питательных сред в течение 20-30 мин при температуре 55-60°С и облучении в дозе 1,5×103 Гр.

Полученные данные позволяют предположить синергетическое действие двух агентов физической природы (температуры и ионизирующего излучения), которые послужили основанием для проведения опытов по использованию комбинированного радиационно-термического метода стерилизации (деконтаминации) питательных сред, используемых в биотехнологии для культивирования на них животных клеток in vitro и выращивания на них вирусов с целью изготовления вирус - вакцин.

Пример 4. Проверка эффективности комбинированного терморадиационного метода деконтаминации питательных сред, используемых в биотехнологии для выращивания культур клеток животных in vitro.

Для этого питательные среды (199, MEM, ГЛА и СКРС), разлитые во флаконы емкостью 100 см3, перед облучением нагревали в сушильном шкафу при температуре 40°, 45°, 50°, 55°, и 60°С в течение 15, 20, 25, 30 мин, а затем подвергали облучению гамма-лучами 60Со в дозах 1×102, 2×103, 4×102, 8×102, 0,8×103, 1×103, 1,5×103, 2×103, 4×103, 8×103, 1×104 Гр.

Подвергнутые комбинированному терморадиационному воздействию питательные среды проверяли на стерильность (степень деконтаминации) путем высева проб из этих сред на бактериологические среды (МПА, МПБ) в количестве 0,5 мл, посевы культивировали в течение 7 сут, проводя ежедневные просмотры, регистрируя количество выросших колоний на бактериологических средах.

Установлено, что питательные среды, нагретые перед облучением до температуры 55-60°С в течение 25-30 мин, а затем облученные гамма-лучами в дозах (0,8-1,5)×103 Гр, оказались стерильными, поскольку в бактериологических средах роста микроорганизмов не обнаруживалось. Изменение указанных параметров терморадиационного воздействия в сторону снижения доз приводило к ослаблению степени деконтаминации, а увеличения их - к ухудшению питательных свойств деконтаминированных сред.

Таким образом, предлагаемый способ деконтаминации питательных сред для культивирования животных клеток in vitro позволяет обеспечить надежную стерилизацию питательных сред, снизить дозы облучения в 13,3 раза по сравнению с только облучением, сократить время облучения в 2 раза и обеспечить безопасность работы обслуживающего персонала.

Способ деконтаминации питательных сред для культивирования животных клеток in vitro, предусматривающий облучение их гамма-лучами, отличающийся тем, что предварительно перед облучением питательные среды подвергают термической обработке путем нагревания их при температуре 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×10Гр.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
21.12.2018
№218.016.aa3a

Способ лечения радиационных поражений организма

Изобретение относится к ветеринарии и медицине, в частности к терапии радиационных поражений организма. Способ лечения радиационных поражений организма заключается во введении в организм бактериального препарата - радиоинактивированной гамма-лучами Со в дозе 25-30 кГр микробной культуры...
Тип: Изобретение
Номер охранного документа: 0002675598
Дата охранного документа: 20.12.2018
07.02.2019
№219.016.b7ef

Мазь для лечения радиационно-термических ожогов и способ их лечения

Настоящее изобретение относится к области медицины, ветеринарии и представляет собой мазь для лечения термических ожогов, нанесенных на фоне внешнего гамма-облучения, содержащая биологически активные вещества и мазевую основу. Описана мазь для лечения радиационно-термических ожогов, содержащая...
Тип: Изобретение
Номер охранного документа: 0002678994
Дата охранного документа: 05.02.2019
22.03.2019
№219.016.ec33

Мазь для лечения термических ожогов и способ их лечения

Настоящее изобретение относится к области медицины, ветеринарии и представляет собой мазь для лечения термических ожогов. Мазь содержит биологически активные вещества и мазевую основу, причем в качестве биологически активных веществ содержит стрептоформ и димексид, а в качестве мазевой основы –...
Тип: Изобретение
Номер охранного документа: 0002682454
Дата охранного документа: 20.03.2019
23.03.2019
№219.016.ec7a

Способ лечения радиационных поражений организма

Изобретение относится к области ветеринарии и медицины и может быть использовано для лечения радиационных поражений организма. Для этого используют бактериальный радиозащитный препарат - стерильный фильтрат фаголизата патогенного штамма стафилококка, который вводят однократно подкожно в дозе...
Тип: Изобретение
Номер охранного документа: 0002682712
Дата охранного документа: 21.03.2019
03.04.2019
№219.016.fa9f

Способ лечения комбинированного поражения организма возбудителем сибирской язвы и ионизирующей радиацией

Изобретение относится к ветеринарии и медицине и может быть использовано для лечения комбинированного поражения организма возбудителем сибирской язвы и ионизирующей радиацией. Способ предусматривает введение в организм биологического препарата - облученного гамма-лучами в дозе 20 кГр...
Тип: Изобретение
Номер охранного документа: 0002683650
Дата охранного документа: 01.04.2019
08.05.2019
№219.017.491f

Способ лечения комбинированных радиационно-термических поражений и средство для его реализации

Изобретение относится к медицине и ветеринарии и может быть использовано для лечения комбинированных радиационно-термических поражений у крыс. Для этого животным вводят биологический препарат растительного происхождения - очищенный скипидар. Скипидар вводят в дозе 0,4 мл подкожно под раневую...
Тип: Изобретение
Номер охранного документа: 0002686843
Дата охранного документа: 06.05.2019
17.07.2019
№219.017.b573

Способ консервирования молока и молочных продуктов

Изобретение относится к молочной промышленности. Способ консервирования молока и молочных продуктов включает введение в молоко или подлежащий консервации продукт молочной эмульсии пчелиного воска на основе молока или сливок в качестве консерванта в количестве 1,0, или 1,25, или 1,75-3,0 г/л...
Тип: Изобретение
Номер охранного документа: 0002694690
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b629

Способ получения антигена вируса бешенства для серологической диагностики

Изобретение относится к медицине, а именно к ветеринарии, и может быть использовано при получении антигена вируса бешенства для серологической диагностики. Для этого получают суспензию из мозга белых мышей, экспериментально зараженных вирусом бешенства. При этом мозговую ткань гомогенизируют в...
Тип: Изобретение
Номер охранного документа: 0002694836
Дата охранного документа: 17.07.2019
01.08.2019
№219.017.bb45

Вакцина ассоциированная против парагриппа-3, инфекционного ринотрахеита, вирусной диареи, рота- и коронавирусной инфекций крупного рогатого скота инактивированная эмульсионная

Изобретение относится к области ветеринарной вирусологии и биотехнологии, в частности к вакцинам ассоциированным против парагриппа-3, инфекционного ринотрахеита, вирусной диареи, рота- и коронавирусной инфекций крупного рогатого скота. Вакцина содержит в качестве активного вещества смесь...
Тип: Изобретение
Номер охранного документа: 0002696007
Дата охранного документа: 30.07.2019
01.08.2019
№219.017.bb56

Способ определения бацитрацина в мясе и мясных продуктах с использованием высокоэффективной жидкостной хроматографии

Изобретение относится к области аналитической химии и представляет собой способ определения бацитрацина в мясе и мясных продуктах с использованием высокоэффективной жидкостной хроматографии, включающий отбор пробы, экстракцию, центрифугирование, фильтрацию, введение растворенного остатка в...
Тип: Изобретение
Номер охранного документа: 0002696010
Дата охранного документа: 30.07.2019
Показаны записи 11-20 из 58.
10.02.2016
№216.014.cf05

Набор синтетических олигонуклеотидных праймеров для выявления рнк вируса бешенства и способ выявления рнк вируса бешенства с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции с обратной транскрипцией (от-пцр)

Изобретение относится к области биотехнологии, а именно к способу выявления РНК вируса бешенства и набору, который используется в данном способе. Способ включает проведение ОТ-ПЦР с олигонуклеотидными праймерами. Праймеры имеют следующие нуклеотидные последовательности: fp_850_gp_rabv 5'...
Тип: Изобретение
Номер охранного документа: 0002575088
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf1a

Биодобавка в питательную среду для культивирования клеток животных и репродукции на них вирусов

Изобретение относится к биотехнологии. Предложена биодобавка в питательную среду для культивирования клеток животных и репродукции на них вирусов, представляющая собой экстракт из кабачков и мышц щуки. Указанный экстракт получают экстрагированием измельченных гомогенизатором тканей кабачков и...
Тип: Изобретение
Номер охранного документа: 0002575797
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2bcb

Кормовая добавка для сельскохозяйственных животных и птицы

Изобретение относится к кормовой промышленности, а именно к биологически активным кормовым добавкам. Кормовая добавка для сельскохозяйственных животных и птицы содержит пчелиный подмор, биомассу и культуральную жидкость, полученную при культивировании чайного гриба Medusomyces Gisevii Lindau,...
Тип: Изобретение
Номер охранного документа: 0002579219
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eff

Способ выращивания и разведения чайного гриба

Изобретение относится к области биотехнологии. Способ выращивания и разведения чайного гриба предусматривает культивирование чайного гриба в условиях аэрации при температуре 23-25°C в слабом растворе чая с растворенным в нем сахаром, выдержку в течение 5-6 дней, процеживание и слив готового...
Тип: Изобретение
Номер охранного документа: 0002580046
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f2c

Способ оценки качества кормов в in vivo тест-системе

Изобретение относится к области определения качества кормов. Техническим результатом является сокращение времени пробоподготовки и проведения анализа в наиболее адекватной «in-vivo» тест-системе с получением полной информации по интегральному показателю качества - биологической полноценности...
Тип: Изобретение
Номер охранного документа: 0002580762
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ed

Автоматическая станция для приготовления вязко-текучей смеси

Автоматическая станция включает тестомесильную машину, эмульсатор, дозаторы воды и муки, промежуточную емкость для теста, транспорт для перемещения компонентов и их смесей. Станция содержит дозаторы для подачи сухих компонентов в дополнительный промежуточный смеситель, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002581483
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.5bb7

Вакцина против инфекционного кератоконъюнктивита крупного рогатого скота на основе антигенов бактерий moraxella bovis и moraxella bovoculi

Изобретение относится к области ветеринарии и предназначено для профилактики инфекционного кератоконъюнктивита крупного рогатого скота. Вакцина в качестве антигенов содержит инактивированные суспензии клеток штаммов бактерий Moraxella bovis «Г97-ВНИВИ» с концентрацией 100-120 млрд. м.к. на 1 см...
Тип: Изобретение
Номер охранного документа: 0002589819
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.c8c5

Способ профилактики оспы овец и коз

Изобретение относится к области ветеринарии и предназначено для профилактики оспы овец и коз. Способ включает выявление 2,5-3% от общего количества животных с инфекционным заболеванием на начальной стадии развития в очаге и 1-й угрожаемой зоне, убой больных и дальнейшее обследование остальных...
Тип: Изобретение
Номер охранного документа: 0002619336
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8fa

Способ профилактики нодулярного дерматита крс

Изобретение относится к области ветеринарии. Предложен способ профилактики нодулярного дерматита крупного рогатого скота (КРС), включающий выявление животных с инфекционным заболеванием на начальной стадии развития, убой больных и дальнейшее обследование остальных животных. Остальных животных в...
Тип: Изобретение
Номер охранного документа: 0002619337
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.ddd9

Дезинфицирующее средство с моющим эффектом

Изобретение относится к области медицины, а именно к дезинфекции и санитарии, и предназначено для мытья и дезинфекции лабораторной посуды, хирургического инструментария ветеринарного и медицинского назначения. Дезинфицирующее средство содержит молочную кислоту 10,0-25,0 мас.%; неионогенный ПАВ...
Тип: Изобретение
Номер охранного документа: 0002624845
Дата охранного документа: 07.07.2017
+ добавить свой РИД