×
12.12.2018
218.016.a58e

Способ определения напряжений в колеблющейся лопатке

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002674408
Дата охранного документа
07.12.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений, вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки. Технический результат: обеспечение возможности определения напряжений в колеблющейся лопатке посредством бесконтактного рентгенографического метода. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано при поузловой доводке элементов ступеней турбомашин, а именно колес и лопаток.

Исследования и анализ напряженно деформированного состояния лопаток и колес газотурбинных двигателей необходимы для обеспечения их надежной работы.

Известен способ определения остаточных напряжений (JP 3940540, 2007), который включает в себя генерирование поверхностной волны путем приложения ударной нагрузки в окрестности контрольной точки на детали, в которой необходимо определить остаточные напряжения. Затем выявляют характеристики акустических волн в зависимости от наличия или отсутствия остаточных напряжений. Недостатками способа являются большие затраты времени для получения необходимых результатов, а также невозможность определения напряжений при динамических нагрузках.

Известен способ определения напряжений при статических нагрузках, когда при измерении рентгенографических постоянных исследуемого материала используется нагружающее устройство, в котором реализуется четырехточечный изгиб (EUROPEAN STANDARD EN 15305, August 2008 "Non-destructive Testing - Test Method for Residual Stress analysis by X-ray Diffraction"). В данном способе на исследуемом образце нагружающее устройство располагают в центре и с помощью рентгеновского дифрактометра производят необходимые измерения. К недостатку известного способа относится отсутствие возможности определять напряжения в исследуемом объекте при динамических нагрузках.

Наиболее близким аналогом является метод определения остаточных напряжений на неподвижном объекте, в частности, в лопатках турбин и компрессоров (Н.А. Яблокова «Анализ напряженно-деформированного состояния лопаток компрессора из сплава ВТ3-1 по рентгенодифракционным данным». В мире неразрушающего контроля, 4[58] декабрь 2012, стр. 42-44). Определение остаточных напряжений производится с использованием рентгеновского дифрактометра Xstress 3000 G3R. Определение составляющих напряжений на поверхности лопатки проводится в трех точках в направлениях измерения азимутного угла ϕ равного 0°, 45° и 90°. Недостатком данного метода являются большие затраты по времени получения окончательных результатов в виде распределения напряжений на поверхности лопатки. Кроме того, данный метод не позволяет определять напряжения в колеблющейся лопатке.

Техническая проблема, решение которой обеспечивается при осуществлении предлагаемого способа, заключается в реализации возможности определения напряжения в колеблющейся лопатке, что упрощает и ускоряет процесс поузловой доводки элементов ступеней турбомашин.

Технический результат заключается в обеспечении бесконтактного определения напряжений в колеблющихся лопатках колес турбомашин.

Решение технической проблемы с достижением заявленного технического результата обеспечивается реализацией способа определения напряжений в колеблющейся лопатке, в котором задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.

Настоящее изобретение поясняется подробным описанием способа определения напряжений в колеблющейся лопатке со ссылкой на фигуру, где представлена блок-схема, показывающая операции, выполняемые при осуществлении заявляемого способа.

На фигуре приняты следующие обозначения:

1 - программный блок;

2 - детектор рентгеновского излучения;

3 - блок синхронизации;

4 - акселерометр;

5 - блок отображения результатов обработки;

6 - вывод результатов на экран;

7 - сигнал для вычисления напряжений;

8 - блок вычисления спектра.

Способ определения напряжений в колеблющейся лопатке реализуется следующим образом. Задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки. Измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода. Используя результаты измерений вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.

Для начала проведения измерения межплоскостных расстояний в кристаллической решетке в управляющем компьютере запускают программный блок 1, в которой заложены данные для управления блоком 3 синхронизации и блоком 8 вычисления спектра, сбором данных с детектора рентгеновского излучения, который находится в рентгеновском дифрактометре. Блок 3 синхронизации собирает и обрабатывает данные поступающие от программного блока 1 и с детектора 2 рентгеновского излучения. После обработки блок 3 синхронизации передает данные в блок 5 отображения результатов обработки и сигнал 7 для вычисления напряжений в блок вычисления напряжений (на чертеже не показан). Блок 8 вычисления спектра собирает и обрабатывает информацию, поступающую с акселерометра 4, установленного на лопатке. После обработки блок 8 вычисления спектра передает данные в блок 5 отображения результатов обработки. Далее блок 5 выводит на экран монитора 6 полученные данные от блока 8.

Задают частоту колебаний лопатки и поддерживают постоянной с помощью акселерометра, установленного на поверхности лопатки. На заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки.

При совершении колебательных движений лопатка испытывает упругую деформацию. Определение упругих напряжений основано на измерении межплоскостного расстояния кристаллической решетки и его относительного изменения. Для измерения межплоскостного расстояния кристаллической решетки используют уравнение Вульфа-Брэгга:

2dSinθ=nλ,

где

d - межплоскостное расстояние;

θ - угол падения рентгеновских лучей;

n - целое число (порядок отражения);

λ - длина волны характеристического рентгеновского излучения.

Основой рентгеноструктурного метода определения напряжений является то, что все атомные плоскости во всех кристаллитах материала одинаково ориентированные по отношению к действующим упругим силам, меняют свои межплоскостные расстояния. Это означает, что согласно формуле Вульфа-Брэгга увеличение или уменьшение величины межплоскостных расстояний приведет к уменьшению или увеличению угла θ, что повлечет за собой смещение измеряемой рентгеновской линии на рентгенограмме, полученной с образца, в котором наведены напряжения, по отношению к исходному состоянию. Для определения напряжений нужно получить отражение от одних и тех же плоскостей в исходном и напряженном состоянии.

Используя результаты измерений межплоскостных расстояний кристаллической решетки вычисляют упругую деформацию (ε) в плоскости съемки:

ε=(d-d0)/d0,

где

d - межплоскостное расстояние в напряженном состоянии;

d0 - межплоскостное расстояние в ненапряженном состоянии.

После вычисления упругой деформации, по ее величине определяют величину напряжения (σ) в заданной точке лопатки, согласно закону Гука

σ=Eε,

где

Е - модуль Юнга;

ε - упругая деформация.

Определение напряжений на лопатке производится за весь период колебаний, начиная с нулевой амплитуды колебаний в заданной точке лопатки. Далее из полученного массива данных выбираются значения, полученные при максимальной амплитуде колебаний.

Предложенный способ значительно ускоряет и упрощает процесс поузловой доводки элементов турбомашин при проведении испытаний, а также на этапе ремонта.

Способ определения напряжений в колеблющейся лопатке, характеризующийся тем, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние кристаллической решетки при нулевой и максимальной амплитудах колебаний в заданной точке лопатки с использованием рентгеноструктурного метода, используя результаты измерений, вычисляют упругую деформацию и по величине упругой деформации определяют величину напряжения в заданной точке лопатки.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Показаны записи 1-10 из 10.
10.06.2014
№216.012.cbfa

Способ определения характеристик композиционного материала

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины....
Тип: Изобретение
Номер охранного документа: 0002517989
Дата охранного документа: 10.06.2014
10.01.2015
№216.013.1b57

Способ определения характеристики колебательного движения элемента турбомашины

Изобретение относится к измерительной технике и может быть использовано при проектировании и поузловой доводке элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов. Способ характеризуется тем, что подсчитывают количество лопаток рабочего колеса,...
Тип: Изобретение
Номер охранного документа: 0002538427
Дата охранного документа: 10.01.2015
27.07.2015
№216.013.67f9

Способ определения частоты вынужденных колебаний рабочего колеса в составе ступени турбомашины

Изобретение используется для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения частоты вынужденных колебаний рабочего колеса (РК) определяют количество лопаток РК и количество лопаток...
Тип: Изобретение
Номер охранного документа: 0002558170
Дата охранного документа: 27.07.2015
20.01.2016
№216.013.a2d9

Способ определения характеристик несинхронных колебаний рабочего колеса турбомашины

Изобретение может быть использовано для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения характеристик несинхронных колебаний рабочего колеса турбомашины, содержащей установленную в...
Тип: Изобретение
Номер охранного документа: 0002573331
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2c42

Способ доводки колес турбомашин

Изобретение может быть использовано в процессе доводки деталей и узлов турбомашин, в частности авиационных двигателей, а также для изучения явлений ротор-статорного взаимодействия и усиления амплитуд колебаний, вызванного расстройкой рабочих колес. Способ характеризуется тем, что нагружают...
Тип: Изобретение
Номер охранного документа: 0002579300
Дата охранного документа: 10.04.2016
03.07.2018
№218.016.69db

Устройство для анализа динамических процессов в рабочих колесах турбомашин

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме...
Тип: Изобретение
Номер охранного документа: 0002659428
Дата охранного документа: 02.07.2018
27.10.2018
№218.016.9772

Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины

Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано для доводки авиационных двигателей при стендовых испытаниях. Снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика,...
Тип: Изобретение
Номер охранного документа: 0002670771
Дата охранного документа: 25.10.2018
05.12.2018
№218.016.a329

Способ определения форм колебаний вращающихся колес турбомашин

Изобретение относится к области испытаний деталей и узлов турбомашин, в частности к способам определения динамических характеристик рабочих колеc. Техническим результатом, достигаемым в заявленном изобретении, является повышение достоверности определения диаметральных форм колебаний...
Тип: Изобретение
Номер охранного документа: 0002673950
Дата охранного документа: 03.12.2018
09.06.2019
№219.017.7a9c

Способ определения остаточных напряжений

Предложенное изобретение относится к области машиностроения и предназначено для определения остаточных напряжений при применении упрочняющих технологий поверхностным пластическим деформированием для повышения сопротивления усталости сложно нагруженных деталей. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002354952
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7e47

Способ определения остаточных напряжений в материале детали

Изобретение относится к области определения остаточных напряжений. Сущность: пластину, изготовленную из материала детали, устанавливают в зажимном приспособлении с возможностью обработки дробью одной ее стороны, подвергают ее этой обработке, определяют величины остаточных напряжений с обеих...
Тип: Изобретение
Номер охранного документа: 0002403550
Дата охранного документа: 10.11.2010
+ добавить свой РИД