×
27.10.2018
218.016.9772

Результат интеллектуальной деятельности: Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины

Вид РИД

Изобретение

№ охранного документа
0002670771
Дата охранного документа
25.10.2018
Аннотация: Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано для доводки авиационных двигателей при стендовых испытаниях. Снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика, следят за уровнем сигнала и с использованием быстрого преобразования Фурье осуществляют обработку сигнала в окрестности точки с максимальным уровнем сигнала для получения значений частот и амплитуд колебаний вращающегося колеса, при этом частоту колебаний колеса с наибольшей амплитудой выбирают в качестве наблюдаемой, далее, представляя сигнал тензометрического датчика на наблюдаемой частоте в координатах «амплитуда-время», следят за периодичностью сигнала и в случае нарушения его периодичности фиксируют временной диапазон, соответствующий выявленному нарушению с определением временной координаты нарушения периодичности сигнала, и затем в упомянутом временном диапазоне осуществляют вейвлет-преобразование сигнала, осуществляя переход от его представления в координатах «амплитуда-время» в представление сигнала тензометрического датчика в координатах «частота-время», анализируют полученную картину сигнала и по виду полученной картины в окрестности временной координаты нарушения периодичности сигнала судят о характере касания лопатки о корпус турбомашины. Изобретение обеспечивает повышение достоверности выявления наличия и характера касания лопатки о корпус турбомашины при сокращении затрат времени на проведение испытаний посредством непрерывного мониторинга моментов касания лопаток о корпус турбомашины. 6 ил.

Изобретение относится к области машиностроения, в частности турбостроения и может быть использовано для доводки авиационных двигателей при стендовых испытаниях, а также при диагностике технического состояния турбомашин.

Эффективность работы осевых лопаточных турбомашин существенным образом зависит от величины радиального зазора. Влияние на эффективность работы величин радиально-осевых зазоров между рабочими лопатками и корпусом турбомашин возрастает с увеличением окружных скоростей, рабочих давлений и температур. Оптимизация величины зазора и, связанная с этой задачей процедура определения момента и характера касания лопатки вращающегося колеса о корпус турбомашины, является существенной технической проблемой.

Диагностирование момента касания лопатки о корпус может быть основано на анализе вибраций, генерируемых работающей турбомашиной. Существует несколько способов анализа вибрационных сигналов. Обычный метод, работающий во временной области и основывающийся на измерении общего уровня вибраций, является самым простым. Метод заключается в отслеживании допустимых уровней вибраций. Для него были разработаны алгоритмы с целью извлечения характерных признаков в записанных сигналах. Среди них метод быстрого преобразования Фурье (БПФ), с использованием которого сигнал представляется в частотной области. По пикам полученного частотного спектра инженер может идентифицировать аномальное поведение машины. Поскольку метод БПФ не может работать с переходными процессами, которые имеют место в нестационарных сигналах и которые, как правило, могут сопутствовать наличию повреждений в работающей машине, были разработаны более сложные методы анализа сигналов, такие как вейвлет преобразование. Эти методы могут обнаружить механические явления, которые являются переходными в силу своей природы, например, такие как касание ротора о корпус машины. Они преобразуют сигнал из области «амплитуда-время» в область «частота-время», где могут быть локализованы частотные компоненты и структурированные сигналы.

Вейвлеты являются наглядным инструментом многократного разложения сигнала и оказались полезными при идентификации дефектов в элементах вращающихся машин и потенциальных разрушений этих элементов в машиностроении.

Известен способ обнаружения момента касания диска, поджимаемого с торца механизмом, имитирующим такое касание (Eduardo Rubio and Juan с. Jauregui, CIATEQ A.C., Centro de Tecnologia Avanzada, Mexico, Time-Frequency Analysis for Rotor-Rubbing Diagnosis, Advances in Vibration Analysis Research, pp. 295-314, www.intechopen.com), согласно которому сигнал, записанный с вибродатчика, установленного на корпусе подшипника преобразуется во времячастотную область.

По осциллограммам в области «амплитуда-время» можно определить два вида касания: мягкое и жесткое. Мягкое касание характеризуется небольшой амплитудой вибрационного сигнала и считается допустимым явлением. Амплитуда сигнала при жестком касании гораздо больше. Жесткое касание может привести к разрушению и поэтому крайне нежелательно. Преобразование вибросигнала в окрестности момента касания в частотно-временную область показывает наличие характерных признаков касания на получаемой картине в виде вертикальных полос.

Данный способ невозможно применить для лопаточных машин, т.к. он разработан для вращающегося диска с гладкой торцевой поверхностью. Характер взаимодействия торцевой части диска с корпусом существенно отличается от такового в случае осевой турбомашины.

Известен также способ определения наличия касания лопаток ротора паровой турбины о корпус, при котором используется информация, поступающая от датчика вибраций (Gang Zhao, Dongxiang Jiang, Jinghui Diao, Lijun Qian («Application of wavelet time-frequency analysis on fault diagnosis for steam turbine» SURVEILLANCE 5 CETIM Senlis 11-13 October 2004, pp. 1-10).

Недостаток данного способа заключается в том, что, как и в предыдущем техническом решении, не используется информация о колебаниях лопатки, которая входит в соприкосновение с корпусом машины. Сигнал, поступающий от датчика вибраций имеет много посторонних шумов, в связи с чем возникают технические сложности в идентификации характера касания лопатки о корпус.

Наиболее близким аналогом является техническое решение для анализа ротор-статорного взаимодействия в рабочем компрессоре (A. Batailly, М. Legrand, A. Millecamps, F. Garcin. Numerical study of a rotor/stator interaction case experimentally simulated with an industrial compressor. Turbo Expo 2012, Jun 2012, Copenhagen, Denmark, pp.GT2012-68171, 2012. <hal-00714538>), содержащее специально подготовленную лопатку с тензодатчиком, напротив торца которой на поверхности корпуса нанесен истираемый слой.

К недостатку данного способа следует отнести тот факт, что для проведения экспериментальных исследований изготовлена и препарирована специальная лопатка, длина которой была больше остальных.

Техническая проблема заключается в создании способа, обеспечивающего повышение достоверности выявления наличия и характера касания лопатки о корпус турбомашины.

Технический результат заключается в сокращении затрат времени на проведение испытаний посредством непрерывного мониторинга моментов касания лопаток о корпус турбомашины.

Решение технической проблемы с достижением заявленного технического результата обеспечивается реализацией способа определения характера касания лопатки вращающегося колеса о корпус турбомашины, характеризующегося тем, что снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика, следят за уровнем сигнала и с использованием быстрого преобразования Фурье осуществляют обработку сигнала в окрестности точки с максимальным уровнем сигнала для получения значений частот и амплитуд колебаний вращающегося колеса, при этом частоту колебаний колеса с наибольшей амплитудой выбирают в качестве наблюдаемой, далее, представляя сигнал тензометрического датчика на наблюдаемой частоте в координатах «амплитуда-время», следят за периодичностью сигнала и в случае нарушения его периодичности фиксируют временной диапазон, соответствующий выявленному нарушению с определением временной координаты нарушения периодичности сигнала, и затем в упомянутом временном диапазоне осуществляют вейвлет-преобразование сигнала, осуществляя переход от его представления в координатах «амплитуда-время» в представление сигнала тензометрического датчика в координатах «частота-время», анализируют полученную картину сигнала и по виду полученной картины в окрестности временной координаты нарушения периодичности сигнала судят о характере касания лопатки о корпус турбомашины.

Такой способ представления сигнала является удобным, поскольку вейвлет анализ позволяет наглядно выявить тонкие особенности структуры сигнала.

Изобретение поясняется чертежами, где

на фиг. 1 показана осциллограмма сигнала, получаемого с тензометрического датчика;

на фиг. 2 приведена осциллограмма сигнала в координатах «амплитуда-время» для режима работы, характеризующегося высокой вероятностью жесткого касания, после обработки сигнала тензодатчика с использованием метода БПФ;

на фиг. 3 приведена картина преобразованного сигнала в координатах «частота-время», приведенного на фиг. 1, полученного с использованием вейвлет-преобразования;

на фиг. 4 приведена картина вторично преобразованного сигнала в координатах «частота-время», приведенного на фиг. 2, полученного с использованием вейвлет-преобразования;

на фиг. 5 приведена осциллограмма сигнала в координатах «амплитуда-время» для режима работы, характеризующегося высокой вероятностью мягкого касания, после обработки сигнала тензодатчика с использованием метода БПФ;

на фиг. 6 приведена картина вторично преобразованного сигнала в координатах «частота-время», приведенного на фиг. 5, полученного с использованием вейвлет-преобразования.

Способ реализуется следующим образом.

При проведении стендовых испытаний, в частности в процессе доводки авиационного двигателя, осуществляют регистрацию сигналов, получаемых с тензометрических датчиков (тензодатчиков), установленных на лопатках рабочего колеса. В зависимости от цели проведения стендовых испытаний количество датчиков может быть различным. В пределе это может быть один датчик.

Далее, при раскрытии изобретения, пояснения будут касаться одного датчика, что не исключает использование нескольких тензодатчиков, обработка сигналов которых осуществляется аналогичным образом.

Для определения характера касания лопатки вращающегося колеса о корпус турбомашины осуществляют определенную последовательность действий. Первоначально препарируют лопатку, устанавливая на нее тензодатчик. В процессе стендовых испытаний регистрируют сигнал тензодатчика и следят за его уровнем (амплитудой сигнала). Пример записанного сигнала тензодатчика показан на фиг. 1.

При обнаружении временной зоны с повышенным уровнем сигнала осуществляют его первичную обработку. Обработку сигнала осуществляют в окрестности точки с максимальным уровнем с использованием метода быстрого преобразования Фурье (БПФ). В результате обработки сигнала получают значения частот и амплитуд колебаний вращающегося колеса. Примеры графиков с обработанным сигналом в координатах «амплитуда-время» показаны на фиг. 2. При этом частоту колебаний вращающегося колеса с наибольшей амплитудой выбирают в качестве наблюдаемой частоты. Под наблюдаемой частотой понимают частоту вращения колеса, на которой реализуются максимальные напряжения в лопатке (максимальный уровень сигнала тензодатчика).

Далее, представляя сигнал тензометрического датчика на наблюдаемой частоте в координатах «амплитуда-время», следят за периодичностью сигнала, т.е. определяют повторяемость формы сигнала с течением времени. В случае нарушения повторяемости сигнала (его периодичности) фиксируют временной диапазон, соответствующий выявленному нарушению с определением временной координаты нарушения периодичности сигнала.

На фиг. 2 моменты нарушения периодичности сигнала обозначены флажками с указанием координат. В упомянутом временном диапазоне, который включает (охватывает) момент нарушения периодичности сигнала осуществляют дополнительную обработку сигнала, которая в данном случае производится с использованием вейвлет-преобразования. Таким образом, осуществление вейвлет-преобразования сигнала обеспечивает переход представления обрабатываемого сигнала из системы координат «амплитуда-время» в систему координат «частота-время».

Картина дополнительно обработанного сигнала с использованием вейвлет-преобразования в координатах «частота-время» показана на фиг. 4, 6.

После получения картины сигнала в координатах «частота-время», полученную картину (т.н. скалограмму) анализируют и выявляют характерные графические объекты, свойственные факту касания лопатки о корпус турбомашины. Упомянутые графические объекты представляют собой вытянутые вдоль вертикальной оси (ось «частота») темные пятна, вкрапленные в область высоких напряжений. На трехмерной, пространственной диаграмме эти графические объекты идентифицируются как углубления. При наличии таких графических объектов делают вывод о наличии касания.

Характер касания определяют по форме упомянутых графических объектов (темных пятен). Сильно вытянутое пятно, по форме похожее на овсяное зерно, свидетельствует о факте жесткого касания (см. фиг. 4). Менее вытянутое пятно, по форме похожее на рисовое зерно, свидетельствует о факте мягкого касания (см. фиг. 6).

Необходимость использования двойного преобразования сигнала (метод БПФ и вейвлет) может быть проиллюстрирована с помощью фиг. 3. На фиг. 3 приведена картина сигнала тензодатчика, приведенного на фиг. 1, полученная с использованием только вейвлет-преобразования сигнала без предварительной обработки с использования метода БПФ. Понятно, что по характеру представленного графического объекта невозможно судить о наличии касания. Тем более невозможно определить его характер. Фактически, вейвлет-преобразование необработанного сигнала переводит картину сигнала из одной системы координат в другую без выявления информации, необходимой для исследователя и для решения заявленной технической проблемы.

Для режима работы, характеризующегося высокой вероятностью мягкого касания, осциллограмма сигнала имеет меньшие амплитуды. Обычно, после обработки сигнала тензодатчика с использованием метода БПФ, форма сигнала в координатах «амплитуда-время» имеет вид, приведенный на фиг. 5. Выявление момента касания в данном случае еще более затруднено. Использование вейвлет-преобразования данного сигнала позволяет выявить моменты касания (см. фиг. 6). На фиг. 5 эти моменты обозначены флажками. Из сопоставления информации, приведенной на фиг. 5 и 6 следует вывод, что использование только метода БПФ не позволяет выявить факты касания лопатки о корпус турбомашины.

Таким образом, сигналы, записанные с тензодатчика, наклеенного на лопатку, могут быть использованы для диагностики касания лопатки о корпус турбомашины. В то же время, как видно на осциллограмме, приведенной на фиг. 2, на ней идентифицированы точки разрыва сигнала. Вместе с тем, такое представление сигнала в амплитудно-временной области является неудобным для выявления характера касания из-за отсутствия характерных и легко различимых признаков в представленной осциллограмме.

Преобразование сигнала в координатах «частота-время» позволяет наглядно и четко указать на характерные признаки касания лопатки о корпус турбомашины. На фиг. 4 показана время-частотная картина касания лопатки рабочего колеса о корпус. Основным признаком жесткого касания является вертикальная светлая полоса, внутри которой располагается темная область, характеризующая момент касания лопатки о корпус. Представление результатов обработки сигнала в таком виде в темпе испытаний турбомашины на стенде позволит вовремя определить потенциальную опасность поломки лопатки рабочего колеса и принять необходимые меры, вплоть до остановки турбомашины.

Случаев мягкого касания на практике встречается множество, поскольку приработка лопаток к истираемому покрытию является стандартной технологической операцией и для каждого конкретного касания будет иметь место свой график тензосигнала. В отличие от мягкого касания график тензосигнала, соответствующий жесткому касанию, строго структурирован, т.е. более упорядочен, и непрерывное вейвлет-преобразование тензосигнала однозначно укажет на характер касания.

Характер осциллограммы, приведенной на фиг. 5, существенно отличается от осциллограммы, приведенной на фиг. 2. Осциллограмма на фиг. 2 носит ярко выраженный синусоидальный характер с хорошо различимыми признаками вероятного касания. Осциллограмма на фиг. 5 представляет из себя набор синусоид, в котором отсутствуют признаки искажения сигнала, характерные для жесткого касания.

На время-частотной картине можно выделить однозначно трактуемые признаки, характеризующие момент и характер касания лопатки о корпус турбомашины.

Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины, характеризующийся тем, что снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика, следят за уровнем сигнала и с использованием быстрого преобразования Фурье осуществляют обработку сигнала в окрестности точки с максимальным уровнем сигнала для получения значений частот и амплитуд колебаний вращающегося колеса, при этом частоту колебаний колеса с наибольшей амплитудой выбирают в качестве наблюдаемой, далее, представляя сигнал тензометрического датчика на наблюдаемой частоте в координатах «амплитуда-время», следят за периодичностью сигнала и в случае нарушения его периодичности фиксируют временной диапазон, соответствующий выявленному нарушению с определением временной координаты нарушения периодичности сигнала, и затем в упомянутом временном диапазоне осуществляют вейвлет-преобразование сигнала, осуществляя переход от его представления в координатах «амплитуда-время» в представление сигнала тензометрического датчика в координатах «частота-время», анализируют полученную картину сигнала и по виду полученной картины в окрестности временной координаты нарушения периодичности сигнала судят о характере касания лопатки о корпус турбомашины.
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Показаны записи 1-9 из 9.
10.06.2014
№216.012.cbfa

Способ определения характеристик композиционного материала

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины....
Тип: Изобретение
Номер охранного документа: 0002517989
Дата охранного документа: 10.06.2014
10.01.2015
№216.013.1b57

Способ определения характеристики колебательного движения элемента турбомашины

Изобретение относится к измерительной технике и может быть использовано при проектировании и поузловой доводке элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов. Способ характеризуется тем, что подсчитывают количество лопаток рабочего колеса,...
Тип: Изобретение
Номер охранного документа: 0002538427
Дата охранного документа: 10.01.2015
27.07.2015
№216.013.67f9

Способ определения частоты вынужденных колебаний рабочего колеса в составе ступени турбомашины

Изобретение используется для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения частоты вынужденных колебаний рабочего колеса (РК) определяют количество лопаток РК и количество лопаток...
Тип: Изобретение
Номер охранного документа: 0002558170
Дата охранного документа: 27.07.2015
20.01.2016
№216.013.a2d9

Способ определения характеристик несинхронных колебаний рабочего колеса турбомашины

Изобретение может быть использовано для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения характеристик несинхронных колебаний рабочего колеса турбомашины, содержащей установленную в...
Тип: Изобретение
Номер охранного документа: 0002573331
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2c42

Способ доводки колес турбомашин

Изобретение может быть использовано в процессе доводки деталей и узлов турбомашин, в частности авиационных двигателей, а также для изучения явлений ротор-статорного взаимодействия и усиления амплитуд колебаний, вызванного расстройкой рабочих колес. Способ характеризуется тем, что нагружают...
Тип: Изобретение
Номер охранного документа: 0002579300
Дата охранного документа: 10.04.2016
10.05.2018
№218.016.4b44

Стенд для измерения нагрузок, воздействующих на объект авиационной техники

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на...
Тип: Изобретение
Номер охранного документа: 0002651627
Дата охранного документа: 23.04.2018
03.07.2018
№218.016.69db

Устройство для анализа динамических процессов в рабочих колесах турбомашин

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме...
Тип: Изобретение
Номер охранного документа: 0002659428
Дата охранного документа: 02.07.2018
05.12.2018
№218.016.a329

Способ определения форм колебаний вращающихся колес турбомашин

Изобретение относится к области испытаний деталей и узлов турбомашин, в частности к способам определения динамических характеристик рабочих колеc. Техническим результатом, достигаемым в заявленном изобретении, является повышение достоверности определения диаметральных форм колебаний...
Тип: Изобретение
Номер охранного документа: 0002673950
Дата охранного документа: 03.12.2018
12.12.2018
№218.016.a58e

Способ определения напряжений в колеблющейся лопатке

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние...
Тип: Изобретение
Номер охранного документа: 0002674408
Дата охранного документа: 07.12.2018
+ добавить свой РИД