×
10.05.2013
216.012.3e2d

ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания. Устройство возбуждения молекул кислорода содержит источник лазерного излучения с частотой, резонансно совпадающей с частотой линии поглощения молекулярного кислорода из основного электронного состояния в возбужденное состояние, и оптическую систему. Оптическая система размещена в воздухозаборнике на входе в камеру сгорания и выполнена с возможностью непрерывного сканирования топливно-воздушного потока лазерным лучом от источника лазерного излучения перпендикулярно оси потока в области, удовлетворяющей условию h/D=0.025-0.05, где D - диаметр проточной части на входе в камеру сгорания, h - поперечный размер области сканирования. Изобретение направлено на уменьшение весогабаритных характеристик двигателя вследствие сокращения длины зон энерговыделения. 3 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД).

Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) представляет собой силовую установку для приведения в движение летательного аппарата при сверх- и гиперзвуковых скоростях полета. Проблема создания эффективного ГПВРД неразрывно связана с необходимостью обеспечения эффективного горения и смешения смеси топлива с воздухом.

Известен (в качестве прототипа) гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД), который обеспечивает эффективное смешение топлива с воздухом (патент РФ №2262000 от 20.10.2003 г.). Топливная форсунка расположена в носовой части двигателя перед воздухозаборником по его оси и соединена с воздухозаборником и обтекаемыми пилонами. Образованная зона, между носовой частью, топливной форсункой, обтекаемыми пилонами и воздухозаборником, интенсифицирует смешение компонент топлива с воздухом за счет инжекции топлива перед воздухозаборником из топливной форсунки, где происходит взаимодействие подаваемой струи с системой волн сжатия и скачков уплотнения, генерируемых самим воздухозаборником. Однако диффузионный характер горения в этом случае, как показывают исследования этих устройств, требует больших длин зоны начального воспламенения, зоны индукции горения, а также непосредственной зоны энерговыделения, т.е. области интенсивного протекания химических реакций. Большая длина зоны энерговыделения приводит к увеличению длины камеры сгорания и, как следствие, к росту весогабаритных характеристик, что затрудняет создавать на практике реальные конструкции двигателей. Поэтому основной целью предлагаемого технического решения является сокращение длины зон энерговыделения и индукции горения.

В основу изобретения положена задача - уменьшение весогабаритных характеристик двигателя, что улучшает технико-экономические характеристики двигателя, повышая возможность его практического использования.

Технический результат - увеличение скорости энерговыделения в камере сгорания возбуждением молекул кислорода резонансным лазерным излучением.

Поставленная задача решается тем, что гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД), содержащий топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, снабжен устройством возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания.

Целесообразно, чтобы устройство возбуждения молекул кислорода резонансным лазерным излучением содержало источник лазерного излучения с частотой, резонансно совпадающей с частотой линии поглощения молекулярного кислорода из основного электронного состояния в возбужденное состояние, и оптическую систему, размещенную в воздухозаборнике на входе в камеру сгорания и выполненную с возможностью непрерывного сканирования топливно-воздушного потока лазерным лучом от источника лазерного излучения перпендикулярно оси потока в области, удовлетворяющей условию: h/D=0.025-0.05, где D - диаметр проточной части на входе в камеру сгорания, h - поперечный размер области сканирования.

Кроме того, целесообразно, чтобы оптическая система была выполнена в виде двух зеркал, отстоящих друг от друга на расстояние, равное внутреннему диаметру D проточной части ГПВРД, при этом одно из зеркал вогнутое, а другое плоское и в нем выполнено сквозное отверстие для ввода луча лазера в пространство между зеркалами, при этом оба зеркала отъюстированы так, что луч, при последовательном отражении от зеркал, пробегая расстояние между зеркалами, смещается как целое в направлении потока топливно-воздушной смеси по оси проточной части двигателя.

В дальнейшем изобретение поясняется описанием и чертежом (фиг.1), на котором представлена принципиальная схема гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД), согласно изобретению.

ГПВРД содержит: 1 - носовая часть, 2 - топливная форсунка, 3 - пилоны, 4 - воздухозаборник, 5 - камера сгорания, 6 - сопло.

ГПВРД, согласно изобретению, снабжен устройством возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания.

На фиг.1 показаны также: 8 - волны сжатия, 9 - скачки уплотнения, 11 - канал ввода лазерного луча, 14 - лазерный луч, D - диаметр проточной части двигателя на входе в камеру сгорания, h - поперечный размер области сканирования.

В лучшем варианте выполнения устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания включает источник лазерного излучения 10 и оптическую систему, размещенную в воздухозаборнике на входе в камеру сгорания. Для организации цепного механизма реакции окисления горения в камере сгорания 5 источник лазерного излучения 10 имеет частоту излучения, резонансно совпадающую с частотой линии поглощения молекулярного кислорода из основного электронного состояния: в возбужденное состояние: , которая соответствует длине волны спектра поглощения излучения молекулярного кислорода: λ=762 нм.

Оптическая система выполнена с возможностью непрерывного сканирования топливно-воздушного потока лазерным лучом от источника лазерного излучения 10 перпендикулярно оси потока в области, удовлетворяющей условию: h/D=0.025-0.05, где D - диаметр проточной части на входе в камеру сгорания, h - поперечный размер области сканирования (фиг.1, вид А-А).

Схема реализации оптического поглощения показана на фиг.1. Здесь: 10 - перестраиваемый по частоте твердотельный лазер Nd:YAG с длиной волны 14 излучения λ=762 нм, которое поступает в поток топливно-воздушной смеси на вход в камеру сгорания 5 по каналу 11. К каналу 11 пристыкована оптическая система, состоящая из двух зеркал 12 и 13, одно из которых плоское, например зеркало 13, в котором выполнено сквозное отверстие для ввода излучения из лазера в пространство между зеркалами 12 и 13, отстоящими друг от друга на расстояние, равное внутреннему диаметру D проточной части ГПВРД. Указанные зеркала отъюстированы так, чтобы при последовательном отражении от них луч, пробегая расстояние между зеркалами, смещался как целое в направлении потока топливно-воздушной смеси по оси проточной части двигателя. Указанная оптическая схема может быть построена с помощью методик и математических соотношений, приведенных (см., например, Ананьев Ю.А. - «Оптические резонаторы и лазерные пучки» М.: Наука 1990. - 264 с.). Таким образом, при каждом отражении оптический путь луча в поперечном направлении относительно оси проточной части будет увеличиваться на длину D, равную расстоянию между зеркалами. При этом луч при соответствующем наклоне зеркала 13 будет как целое перемещаться вдоль оси проточной части на расстояние h, сканируя таким образом топливно-воздушный поток до получения в потоке концентрации синглетного кислорода, достаточной для воспламенения смеси. Необходимость увеличения оптического пути в газовом потоке вызвана малой величиной коэффициента поглощения среды на указанном переходе (см., например, «Световой котел-генератор синглетного кислорода O2 (a 1Δg)» Липатов Н.И., Бирюков А.С., Гулямова Э.С. Квантовая электроника 38, №13 (2008)), поэтому для получения необходимой концентрации синглетного кислорода, достаточной для воспламенения и горения газовой смеси необходимо набрать определенную длину оптического хода луча, равную по очевидным соображениям произведению количества отражений от зеркала на расстояние D между зеркалами.

В качестве топливно-воздушной смеси может использоваться как водородно-воздушная смесь, так и углеводородно-воздушная смесь, молекулярный кислород которой является окислителем для молекул горючего.

Топливо из носовой части двигателя подают через топливную форсунку 2 в гиперзвуковой поток на вход в воздухозаборник 4, который состыкован с входом в камеру сгорания 5 двигателя ГПВРД.

В камере сгорания под действием высокой температуры торможения набегающего потока или специальных воспламенителей топливно-воздушная смесь воспламеняется и образовавшаяся тепловая энергия продуктов сгорания преобразуется в направленный импульс тяги двигателя в сопле 6.

Воспламененную смесь непрерывно сканируют лазерным лучом перпендикулярно оси в области, удовлетворяющей условию: h/D=0.025-0.05 с частотой, соответствующей длине волны спектра поглощения излучения молекулярного кислорода: λ=762 нм.

При облучении и сканировании топливо-воздушной смеси возбужденные молекулы O2 в результате межмолекулярных соударений переходят в синглетное состояние О2 (A 1Δg), становятся более активными в преодолении активационного барьера химической реакции окисления и организуется цепной механизм протекания реакций окисления горючего.

Преобразование электронно-возбужденных в метастабильные состояния и (A 1Δg) молекул О2 осуществляется резонансным поглощением в молекулярном кислороде гиперзвукового потока на входе в камеру сгорания топливно-воздушной смеси лазерного излучения от перестраиваемого по частоте излучения серийного импульсного лазера Nd:YAG, настроенного на частоту резонансного перехода молекул О2 из основного электронного состояния в синглетное состояние О2 (A 1Δg) и частоте перехода (ν=3.93×1014 с-1), которая соответствует длине волны спектра поглощения излучения молекулярного кислорода: λ=762 нм.

Нетрудно понять, что характерная длина проточной части камеры сгорания определяется скоростью протекания химических реакций и скоростью движения газа в зоне энерговыделения в проточной части камеры сгорания. В том случае, если скорость энерговыделения будет выше сверхзвуковой скорости потока в камере сгорания, эффективность горения будет оптимальной. Так как процесс окисления горючего происходит с гораздо большей скоростью, следовательно, зоны энерговыделения и индукции значительно сокращаются. Сокращение зоны энерговыделения и индукции позволяет значительно уменьшить длину камеры сгорания и, соответственно, ее весогабаритные характеристики, создает значительный технико-экономический эффект при конструировании двигателей и позволяет реализовать конструкции двигателей для практического использования.

Изобретение может быть использовано в двигательных установках гиперзвуковых летательных аппаратов.


ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 212.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
Показаны записи 1-10 из 89.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
+ добавить свой РИД