×
24.11.2018
218.016.a0ba

Результат интеллектуальной деятельности: Германат редкоземельных элементов в наноаморфном состоянии

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения, используемых для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах светодиодов белого свечения и оптических дисплеях. Предложенный люминофор обладает хорошей термоустойчивостью. 3 пр.

Изобретение относится к люминофорам белого свечения, используемым для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах WLED и оптических дисплеях.

Известен люминофор белого свечения Sr0.8Ca1.2Y7.2(SiO4)6O2: 0.2Dy3+, 0.6Bi3+ (Qisheng Sun, Xuemin Li, Yide Du, Bo Zhao, Hua Li, Yan Huang, Zhipeng Ci, Jiachi Zhang, Ji Ma, and Yuhua Wang. Luminescence Mechanism and Thermal Stabilities of a White Silicate Phosphor for Multifunctional Applications. J. of the American Ceramic Society, 2016, October, p. 1-9).

Недостатком известного люминофора является отклонение цвета свечения от чисто белого в желто-зеленую область (цветовые координаты 0.3828;0.3999). Известен люминофор белого свечения на основе двойного ванадата цезия и цинка, имеющий состав, масс.%: CsZnVO4 99.94-99.98; Sm2O3 0.03-0.01; СеO2 0.03-0.01. Известный люминофор обеспечивает белый цвет свечения с цветовыми координатами (0.32; 0.34) (патент Ru 2526078; МПК C09K 11/55,82; 2014 г.).

Недостатком известного люминофора являются его невысокая термическая устойчивость, обусловленная достаточно низкой температурой плавления (850°С).

Таким образом, перед авторами стояла задача расширить номенклатуру люминофоров белого цвета свечения за счет разработки термоустойчивого состава.

Поставленная задача решена в предлагаемом германате редкоземельных элементов состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15, в наноаморфном состоянии в качестве люминофора белого цвета свечения.

В настоящее время в патентной и научно-технической литературе не описан люминофор белого цвета свечения предлагаемого состава в наноаморфном состоянии.

Спектр свечения предлагаемых люминофоров состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15) в наноаморфном состоянии состоит из люминесценции с максимумом при 420 нм с интегральной интенсивностью IEu2+=15000-16690 отн. ед. и с максимумом при 620 нм с интегральной интенсивностью IEu3+ =3500-2830 отн. ед. Смешение этих двух видов излучения дает результирующее свечение белого цвета.

Исследования, проведенные авторами, позволили сделать вывод, что новое соединение состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15, в наноаморфном состоянии, обладающее свойством, которое позволяет использовать его в качестве люминофора в белой области свечения, может быть получено только при условии соблюдения значений 0.05≤х≤0.15. При несоблюдении этих значений х целевой продукт образуется в виде смеси нанокристаллических и наноаморфных частиц и цвет свечения становится либо с розовым оттенком при х<0.05 (цветовые координаты 0.34; 0.29) либо с голубым оттенком при х>0.15 (цветовые координаты 0.30; 0.28).

Белое свечения обусловлено одновременно наличием ионов Eu3+ и ионов Eu2+, которые образуются в результате радиационного восстановления ионов Eu3+ в процессе получения соединения. Кроме того, при испарении состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15 для получения наноаморфного состояния образуются дважды отрицательные вакансии в кристаллографических позициях, занимаемых ионами Са2+. Вакансии передают свой отрицательный заряд двум ионам Eu3+, что приводит к дополнительному образованию ионов Eu2+. Смешение излучений ионов Eu3+ и образовавшихся ионов Eu2+ дает результирующее свечение белого цвета.

Люминофор в наноаморфном состоянии может быть получен следующим способом. Берут CaCO3 и оксиды La2O3, Eu2O3, GeO2 в соотношении 2:(3.8-3.4):(0.2-0.6):6, соответственно. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 2.5-3 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1200-1250°С в течение 28-30 ч. Полученный продукт состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15) прессуют в таблетки диаметром 20-25 мм, высотой 15-20 мм при комнатной температуре и давлении 250-255 МПа. Затем таблетку отжигают при температуре 1050-1100°С в течение 8-10 ч. Полученную таблетку для испарения помещают в установку (патент Ru 2353573). Целевой продукт в наноаморфном состоянии получают путем испарения таблетки на стеклянную подложку в вакууме электронным пучком в газе низкого давления (остаточное давление 3 – 5.3 Па). В условия: ускоряющее напряжение в установке 38-40 кВ, длительность импульса 90 - 100 мкс, частота подачи импульсов – 40-50 Гц, ток пучка – 0.2-0.6 А. Контроль наноаморфного состояния проводят с помощью электронной микроскопии и электронографии. Контроль состава целевого продукта проверяют энергодисперсионным и химическим анализами. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектры люминесценции получают на спектрометре и регистрируют с помощью фотоэлектронного умножителя (ФЭУ).

Получение и применения нового люминофора иллюстрируются следующими примерами.

Пример 1. Берут La2O3 - 15.1100 г., CaCO3 - 2.4425 г., Eu2O3 - 0.9775 г. и GeO2 - 7.6500 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 2.5 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1200°С в течение 28 ч. Полученный продукт состава Ca2La7.6Eu0.4Ge6O26 (х=0.05) прессуют в таблетку диаметром 20 мм, высотой 15 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1050°С в течение 8 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 38 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 40 Гц, ток пучка – 0.2 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La7.6Eu0.4Ge6O26-δ, где δ – нестехиометрия (δ = 4.3, х = 0. 05). Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 15000 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 3500 отн. ед. Смешение этих двух видов излучения дает результирующее свечение белого цвета. Отношение интегральных интесивностей IEu2+/IEu3+=4.2 отн. ед. Цветовые координаты (0.34; 0.31). Термоустойчивость: температура плавления – 1300°С.

Пример 2. Берут La2O3 - 14.2825 г., CaCO3 - 2.4350 г., Eu2O3 - 1.7150 г. и GeO2 - 7.6475 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2 об. %). Перемешивают растворы и выпаривают в течение 2.8 часов. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1225°С в течение 29 ч. Полученный продукт состава Ca2La7.2Eu0.8Ge6O26 (х=0.1) прессуют в таблетку диаметром 22 мм, высотой 18 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1075°С в течение 9 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 39 кВ, длительность импульса - 95 мкс, частота подачи импульсов - 45 Гц, ток пучка – 0.4 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La7.2Eu0.8Ge6O26-δ, где δ = 5.0, х = 0.1. Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 16000 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 3000 отн. ед. Смешение этих двух видов излучений дает результирующее свечение белого цвета. Отношение IEu2+/IEu3+=5,3 отн. ед. Цветовые координаты (0.32; 0.32). Термоустойчивость: температура плавления – 1300°С.

Пример 3. Берут La2O3 - 13.4600 г., CaCO3 - 2,4325 г., Eu2O3 - 2.5650 г. и GeO2 - 7.6350 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 3 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1250°С в течение 30 ч. Полученный продукт состава Ca2La6.8Eu1.2Ge6O26 (х=0.15) прессуют в таблетку диаметром 30 мм, высотой 20 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1100°С в течение 10 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 100 мкс, частота подачи импульсов - 50 Гц, ток пучка - 0,6 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La6.8Eu1.2Ge6O26-δ, где δ = 5.2, х = 0.15. Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 16900 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 2830 отн. ед. Смешение этих двух видов излучений дает результирующее свечение белого цвета. Отношение IEu2+/IEu3+=5.9 отн. ед. Цветовые координаты (0.31; 0.31). Термоустойчивость: температура плавления – 1300°С.

Таким образом, авторы предлагают расширить номенклатуру люминофоров белого свечения за счет использования термоустойчивого люминофора состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15).

Германат редкоземельных элементов состава CaLaEuGeO, где 0.05≤х≤0.15, в наноаморфном состоянии в качестве люминофора белого цвета свечения.
Источник поступления информации: Роспатент

Показаны записи 61-70 из 103.
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.f9e8

Способ получения диэлектрического материала на основе силиката цинка

Изобретение относится к получению диэлектрических материалов на основе силиката цинка со структурой виллемита, которые могут быть использованы для изготовления керамики, применяемой в конденсаторах, входящих в электрические схемы с целью накопления электрического заряда, подавления пульсаций,...
Тип: Изобретение
Номер охранного документа: 0002683432
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором...
Тип: Изобретение
Номер охранного документа: 0002683879
Дата охранного документа: 02.04.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53bf

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную...
Тип: Изобретение
Номер охранного документа: 0002687737
Дата охранного документа: 16.05.2019
08.06.2019
№219.017.7580

Способ получения порошковой композиции на основе оксикарбидов алюминия

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении упрочняющих и легирующих добавок для алюминиевых сплавов, углеродсодержащих огнеупорных, керамических и абразивных материалов. Сначала готовят исходную смесь гидроксида алюминия и сажи путём осаждения...
Тип: Изобретение
Номер охранного документа: 0002690918
Дата охранного документа: 06.06.2019
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
23.08.2019
№219.017.c29f

Средство для контрастирования при рентгенодиагностике

Изобретение относится к рентгенологии. Предложено средство для контрастирования при рентгенодиагностике, содержащее (масс. %): наночастицы танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий,...
Тип: Изобретение
Номер охранного документа: 0002697847
Дата охранного документа: 21.08.2019
Показаны записи 11-16 из 16.
29.04.2019
№219.017.41ca

Способ получения нанопорошков и устройство для его реализации

Изобретение относится к способам и устройствам для получения нанопорошков из различных материалов. Способ включает испарение мишени электронным пучком, конденсацию паров материала в камере испарения и осаждение нанопорошка. Испарение мишени осуществляют импульсным электронным пучком с энергией...
Тип: Изобретение
Номер охранного документа: 0002353573
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.56bf

Способ антимикробной обработки жидкости и устройство для его реализации

Изобретение относится к способу обработки жидкости. На жидкость в потоке, находящуюся в межэлектродном пространстве, без существенного нагрева воздействуют серией наносекундных высоковольтных импульсов, длительностью менее 20 нс, с амплитудой напряженности электрического поля не менее 6·10 В/м....
Тип: Изобретение
Номер охранного документа: 0002316989
Дата охранного документа: 20.02.2008
23.08.2019
№219.017.c29f

Средство для контрастирования при рентгенодиагностике

Изобретение относится к рентгенологии. Предложено средство для контрастирования при рентгенодиагностике, содержащее (масс. %): наночастицы танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий,...
Тип: Изобретение
Номер охранного документа: 0002697847
Дата охранного документа: 21.08.2019
14.12.2019
№219.017.edb6

Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Изобретение относится к фармацевтике и может быть использовано для производства системы-носителя для направленной доставки лекарств при диагностике или терапии. Предложена система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка,...
Тип: Изобретение
Номер охранного документа: 0002708894
Дата охранного документа: 12.12.2019
06.02.2020
№220.017.ffc1

Способ производства сывороточного изолята для изготовления адаптированных молочных смесей и заменителей грудного молока

Изобретение относится к молочной промышленности. Способ предусматривает электронно-лучевую обработку импульсным наносекундным пучком электронов плотностью 30-45 кГр на кромке, что соответствует поглощенной дозе 8-9 кГр в усредненном потоке, обезжиренной смеси коровьего молока и коровьего...
Тип: Изобретение
Номер охранного документа: 0002713275
Дата охранного документа: 04.02.2020
14.05.2023
№223.018.5685

Биомедицинский материал для диагностики патологий в биологических тканях

Изобретение относится к способам диагностики патологий в биологических тканях. Предложен биомедицинский материал для диагностики патологий в биологических тканях, содержащий наноразмерный апконверсионный люминофор и органическую добавку, причем в качестве апконверсионного люминофора он содержит...
Тип: Изобретение
Номер охранного документа: 0002734957
Дата охранного документа: 26.10.2020
+ добавить свой РИД