×
29.03.2019
219.016.ede3

Результат интеллектуальной деятельности: Способ получения магнетита

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция, при этом проводят автоклавную обработку красного шлама при температуре 235-250°С и давлении 21-26 МПа при перемешивании с введением в исходный шлам 30%-ного раствора NaOH при соотношении Ж:Т, равном (4-5):1, и соли железа(II) в количестве 5-25 мас.% от массы исходного шлама. Содержание гидроксида кальция составляет 3-4 мас.% по СаО от массы исходного шлама. Изобретение обеспечивает высокое извлечение целевого продукта, значительное снижение температуры процесса и, как следствие, отсутствие возможности образования карбида железа в качестве нежелательной примеси и необходимости в дополнительном дроблении и измельчении целевого продукта. 2 з.п. ф-лы, 3 пр.

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства.

К настоящему времени в шламоотвалах глиноземных предприятий накоплено большое количество отходов – красных шламов. Ежегодно каждый завод, выпускающий 1 млн тонн продукции – глинозема, выбрасывает 1-1,5 млн тонн красных шламов, которые создают проблемы как экономического, так и экологического плана. В связи, с чем является актуальной задачей разработка способов комплексной переработки минеральных отходов, обеспечивающих технико-экономическую эффективность производства.

Повышенное содержание оксидов железа (до 45-55 масс. %) в красных шламах делает их перспективным сырьем для черной металлургии. Прямое использование красных шламов в качестве сырья для выплавки чугуна способствует потерям (выводу) алюминия и натрия в виде вторичных отходов – шлаков и ухудшает технологические параметры выплавки чугуна. Поэтому более перспективным является получение на основе исходного состава красных шламов железосодержащего продукта, обладающего сильными магнитными свойствами, что облегчит его последующее отделение от немагнитных минералов, содержащих преимущественно кальций и кремний.

Известен способ получения магнетита с использованием красного шлама, образующегося при производстве алюминия по способу Байера, который включает по меньшей мере стадию восстановления гематита и/или гетита до магнетита по меньшей мере одним восстановителем. Восстановитель содержит по меньшей мере растительное масло, и/или жир, и/или уголь совместно с по меньшей мере растительным маслом и/или жиром. Изобретение позволяет утилизировать красный шлам, повысив экологичность (за счет использования в качестве восстановителя углеродсодержащих органических жиров) процесса получения магнетита (патент РФ № 2433956, МПК C01G 49/08, 2011год).

Недостатком способа являются обжиг в восстановительной атмосфере при высокой температуре 650-1000 °С всей массы красных шламов, в том числе и немагнитных минералов. К недостаткам относится также возможность образования в процессе восстановления сырья карбида железа, который обладает немагнитными свойствами и является нежелательной примесью в процессе последующего выделения магнетита.

Наиболее близким по технической сущности к предлагаемому способу является способ получения магнетита, включающий обесщелачивание и намагничивание красного шлама процесса Байера при введении 5-20% обесщелачивающего агента, содержащего СаО, и 5-25% восстановителя, которым является уголь, растительное волокно и т.д., содержащие углерод и обладающие восстановительными свойствами, путем прокаливания при 1100-1400 С. Получаемый после обжига материал дробят и измельчают и направляют на выделение магнетитового минерального материала, содержащего не менее 55% железа и около 2% щелочи (Na2О) (Appl. СN 105331799А, МПК C22B 1/02, 2016 год)(прототип).

Недостатками способа являются:

- высокая температура 1100-1240 °С обжига в восстановительной атмосфере всей массы красного шлама, в том числе и немагнитных фаз;

- возможность образования в процессе восстановления при высокой температуре карбида железа, который обладает немагнитными свойствами, что при проведении последующей магнитной сепарации увеличит потери железосодержащего соединения с немагнитными фазами;

- после проведения обжига для последующей переработки необходимо проведение дробления и измельчения спеченного твердого продукта.

Таким образом, перед авторами стояла задача упростить способ получения магнетита с использованием в качестве исходного сырья красного шлама, обеспечивающий наряду с высоким извлечением целевого продукта значительное снижение температуры процесса, и, как следствие, исключающий возможность образования карбида железа в качестве нежелательной примеси и необходимость в дополнительном дроблении и измельчении целевого продукта.

Поставленная задача решена в предлагаемом способе получения магнетита, включающем обработку красного шлама в присутствии гидроксида кальция, в котором проводят автоклавную обработку красного шлама при температуре 235-250оС и давлении 21-26 МПа с введением в исходный шлам 30%-ного раствора NaOH при соотношении Ж:Т равном (4-5):1 и соли железа (II) в количестве 5-25 масс.% от массы шлама, при этом содержание гидроксида кальция составляет 3-4 масс.% по СаО от массы шлама.

При этом в качестве соли железа (II) могут быть использованы сульфат железа (II), оксалат железа (II).

В настоящее время из патентной и научно-технической литературы не известен способ получения магнетита с использованием в качестве исходного сырья красного шлама путем автоклавной обработки при одновременном присутствии соединений железа (II) и кальция в заявленных пределах технологических параметров.

Исследования, проведенные авторами, позволили выявить синергетическое действие одновременного введения соли железа (II) и гидроксида кальция, обеспечивающее совокупность химических процессов получения магнетита с высоким выходом:

гидроксид кальция способствует растворению натрия и алюминия из алюмосиликатов натрия, входящих в состав красного шлама, которые обволакивают и пассивируют поверхность частиц гематита Fe2O3 в красном шламе, в результате разложения алюмосиликатов натрия с растворением натрия и алюминия, входящих в их состав, высвобождается поверхность частиц гематита Fe2O3 для последующих превращений в щелочном растворе;

введение соли железа (II) приводит к образованию феррит-ионов в щелочном растворе, которые на высвобожденной поверхности частиц гематита Fe2O3 генерируют синтез магнетита Fe3O4 в соответствии с реакциями:

Fe2+ + 2 OH-= Fe(OH)2 aq ↔ HFeO2- + H+

Fe2O3 + HFeO2- = Fe3O4 + OH-.

Исследования, проведенные авторами, позволили установить, что предлагаемые технологические параметры процесса получения магнетита являются существенными. Так проведение автоклавной обработки при температуре ниже 235°С с добавлением 30%-ного раствора гидроксида натрия при соотношении Ж:Т меньшем 4:1 наблюдается повышение вязкости автоклавной пульпы, что затрудняет ее перемешивание, а также снижается растворимость алюминия и натрия. Проведение автоклавной обработки при температуре выше 250°С с добавлением 30%-ного раствора гидроксида натрия при соотношении Ж:Т большем 5:1 наблюдается излишнее расходование щелочного раствора.

Введение гидроксида кальция в количестве менее 3 масс. % СаО от количества взятого шлама и соли железа (II) менее 5 масс.% ведет к снижению степени разложения алюмосиликатов натрия шлама и низкому выходу магнетита. При этом непрореагировавшее железо в красном шламе в виде исходной немагнитной фазы гематита теряется с немагнитным продуктом. При этом увеличение количества гидроксида кальция более 4 масс % от количества взятого шлама в присутствии соединений Fe(II), взятых более 25 масс.% приводит к снижению содержания магнетита в обработанном шламе, так как в этом случае образуются устойчивые в щелочных растворах алюминаты кальция, которые легко переходят при понижении температуры в стабильный трехкальциевый алюминат и теряются с отработанным красным шламом, снижая степень растворения натрия и алюминия из алюмосиликатов натрия. Кроме того, наблюдается перерасход обоих реагентов.

Предлагаемый способ может быть осуществлен следующим образом. Твердую фазу красного шлама состава, %: 46,1 Fe2О3; 14,1 Al2O3; 10,3 SiO2; 18,0 CaO; 5,2 Na2O; 4,6 TiO2; 1,1 MgO; 0,7 P2O5 и пр., помещают в автоклав, туда же помещают гидроксид кальция (известь) в количестве 3-4 масс. % по СаО от массы исходного (сухого) красного шлама, соль двухвалентного железа в количестве 5-25 масс.% от массы шлама и 30%-ный раствор NaOH при соотношении Ж:Т равном (4-5):1. Автоклавную обработку полученной пульпы проводят в течение 1,5 часов при температуре 235-250 °С давлении 21-26 МПа. Затем пульпу охлаждают и фильтруют.

По данным химического анализа конечный продукт, полученный из красного шлама, содержит 35-45 % общего железа преимущественно в виде магнетита Fe3O4 с примесью не более 10-20 % гематита Fe2O3, менее 5 % Al2O3; менее 1 % Na2O.

Щелочной алюминатный раствор после отделения твердой фазы возвращают на разбавление автоклавной пульпы или в основное производство в процесс Байера.

Предлагаемый способ переработки красного шлама с получением магнетита иллюстрируется следующими примерами.

Пример 1. Берут 25,0 г сухого красного шлама процесса Байера химического состава, %: 46,1 Fe2O3; 14,1 Al2O3; 10,3 SiO2; 18,0 CaO; 5,2 Na2O; 4,6 TiO2, помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Туда же помещают 0,100 дм3 30%- ного раствора щелочи NaOH при соотношении Ж:Т равном 4:1; 0,75 г Са(ОН)2, что соответствует 3% от массы взятого шлама, и 2,0 г FeC2O4∙2H2O, что соответствует 8 % от массы взятого шлама. Автоклавную обработку проводят при температуре 250 °С, давлении 26 МПа в течение 1,5 часа. После охлаждения и фильтрования пульпы получают по данным химического анализа магнетитовый концентрат содержит 35,6 % общего железа, в том числе в фазе магнетита Fe3O4 31,1% и в фазе гематита Fe2O3 18,8%; содержание Al2O3 составляет 2,89 %; Na2O – 0,9 %.

Пример 2. Берут 25,0 г сухого красного шлама процесса Байера химического состава, %: 46,1 Fe2O3; 14,1 Al2O3; 10,3 SiO2; 18,0 CaO; 5,2 Na2O; 4,6 TiO2, помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Туда же помещают 0,125 дм3 30%- ного раствора щелочи NaOH при соотношении Ж:Т равном 5:1; 1,0 г Са(ОН)2, что соответствует 4% от массы взятого шлама, и 1,3 г FeC2O4∙2H2O, что соответствует 5 % от массы взятого шлама. Автоклавную обработку проводят при температуре 235 °С, давлении 26 МПа в течение 1,5 часа. После охлаждения и фильтрования пульпы получают по данным химического анализа магнетитовый концентрат содержит 33,8 % общего железа, в том числе в фазе магнетита Fe3O4 33,4 % и в фазе гематита Fe2O3 13,7%; содержание Al2O3 составляет 3,59 %; Na2O – 0,9 %.

Пример 3. Берут 25,0 г сухого красного шлама процесса Байера химического состава, %: 46,1 Fe2O3; 14,1 Al2O3; 10,3 SiO2; 18,0 CaO; 5,2 Na2O; 4,6 TiO2, помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Туда же помещают 0,125 дм3 30%- ного раствора щелочи NaOH при соотношении Ж:Т равном 5:1; 0,75 г Са(ОН)2, что соответствует 3% от массы взятого шлама, и 6,25 г FeSO4∙7H2O, что соответствует 25 % от массы взятого шлама. Автоклавную обработку проводят при температуре 250 °С, давлении 21 МПа в течение 1,5 часа. После охлаждения и фильтрования пульпы получают по данным химического анализа магнетитовый концентрат содержит 43,1 % общего железа, в том числе в фазе магнетита Fe3O4 51,1% и в фазе гематита Fe2O3 8,7%; содержание Al2O3 составляет 3,80 %; Na2O – 0,8 %.

Таким образом, авторами предлагается способ получения магнетита с использованием в качестве исходного сырья красного шлама, обеспечивающий наряду с высоким извлечением целевого продукта значительное снижение температуры процесса, и, как следствие, отсутствие возможности образования карбида железа в качестве нежелательной примеси и необходимости в дополнительном дроблении и измельчении целевого продукта.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 22.
10.04.2013
№216.012.337e

Способ получения оксида скандия

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из бедного скандиевого концентрата. Способ получения оксида скандия включает растворение скандийсодержащего концентрата в серной кислоте, удаление кислотонерастворимого осадка, перевод скандия в осадок в...
Тип: Изобретение
Номер охранного документа: 0002478725
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.4492

Способ получения оксида скандия из красного шлама

Изобретение относится к металлургии цветных металлов, а именно к получению оксида скандия из красного шлама производства глинозема. Способ включает многократное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия при пропускании через смесь дымовых газов печей...
Тип: Изобретение
Номер охранного документа: 0002483131
Дата охранного документа: 27.05.2013
10.07.2013
№216.012.544d

Твердый экстрагент для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002487184
Дата охранного документа: 10.07.2013
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.78ca

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в...
Тип: Изобретение
Номер охранного документа: 0002599039
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.89db

Способ извлечения иттрия из водных солянокислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано в способе для извлечения и концентрирования иттрия из водных растворов. Способ извлечения иттрия из водных солянокислых растворов включает экстракцию смесью органической кислоты и керосина, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002602313
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.db20

Способ извлечения циркония из кислых водных растворов

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных...
Тип: Изобретение
Номер охранного документа: 0002623978
Дата охранного документа: 29.06.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
+ добавить свой РИД