×
30.03.2019
219.016.f909

Результат интеллектуальной деятельности: Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ. Предлагается способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050С в течение 1-1,5 ч. Полученный композиционный биоактивный материал (Ca(PO)(OH)-CaF, имеющий елкокристаллическую структуру и повышенную твердость, может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. 1 табл., 2 пр.

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ.

В настоящее время в медицинской практике для замены и восстановления костной ткани широко используются биоматериалы на основе фосфатов кальция, главным образом – Ca10(PO4)6(OH)2 (гидроксиапатит - ГАП), практически идентичный по структуре и химическому составу природной костной ткани и обладающий выраженным остеотропным поведением в биологических средах. Недостатком биокерамики на основе ГАП является низкая механическая твердость, что не предполагает ее использование для ликвидации дефектов костных тканей, испытывающих значительные механические нагрузки. Повысить твердость биоматериалов на основе ГАП возможно за счет химического модифицирования его структуры.

Известен биоматериал для замещения дефектов костной ткани на основе натурального коралла, очищенного от коралловой пыли и микроорганизмов проточной водой с последующей стерилизацией, семейства Acroporidae, или Pocillporidae, или Faviidae естественного происхождения или выращенный в марикультуре в виде цельных фрагментов или в гранулированной форме, дополнительно очищенный 3%-ным раствором гипохлорита натрия и ультразвуковым воздействием частотой 40 кГц в течение 3-5 мин, высушиванием и стерилизацией γ-облучением при суммарной дозе 25 кГр, при этом его поверхность может быть активирована лизатом аутологичных тромбоцитов (ЛАТ) путем помещения биоматериала в жидкий ЛАТ на 3 ч при соотношении объемов биоматериал/ЛАТ - 1/3 (патент RU 2472516; МПК A61K 35/56, A61F 2/28; A61L 27/00; 2013г.).

Недостатком известного материала является сложный способ его получения, а также ограниченная доступность исходного материала.

Известен материал на основе гидроксиапатита, содержащий карбонат кальция, предназначенный для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Известный материал получают в результате химического осаждения из водных растворов с промывкой в этаноле, фильтрованием и сушкой, и последующим старением в маточном растворе в течение не менее 14 суток. Таким образом, известный способ позволяет получить порошок состава 75-85 масс.% гидроксиапатита и 15-25 масс.% карбоната кальция, применяемых в медицине в качестве матриксов для восстановления костной ткани (патент RU 2440149; МПК A61L 22/02, A61L 27/12, B82B 1/00; 2012 г.).

Однако известный биоактивный материал имеет следующие недостатки: при получении материала применяется длительный ступенчатый способ синтеза, в результате в конечном продукте могут содержаться нежелательные примеси, загрязняющие конечный продукт, кроме того наличие карбонатной группы обусловливает невысокую механическую твердость.

Известен материал, представляющий собой фторированный гидроксиапатитовый композит, который содержит смесь фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) (патент TW 201200471; МПК A61L27/12, C01B25/455; 2012 год ) (прототип), который получают путем смешивания фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) в деионизированной воде в течение 24 часов, далее смесь просушивается при температуре 100°С, после прокаливается при температуре 1000°С. После прокалки охлажденную смесь измельчают с помощью шаровой мельницы, после измельчения сушат готовый порошковый материал при температуре 100 °С.

Недостатками известного материала являются недостаточно высокая микротвердость (225-290 МПа) и возможность дестабилизации конечного состава за счет потери массы при обжиге.

Таким образом, перед авторами была поставлена задача разработать биологически активный композиционный материал, обладающий повышенной твердостью и стабильностью конечного состава, и технологически простой способ его получения.

Поставленная задача решена в предлагаемом биоактивном композиционном материале для замещения костных дефектов, содержащем гидроксиапатит и фторид кальция, который содержит компоненты в следующем соотношении (масс.%):

- гидроксиапатит - 84÷86;

- фторид кальция - 14÷16.

Поставленная задача решена также в способе получения биоактивного композиционного материала для замещения костных дефектов по п.1, заключающемся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25÷6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200÷300 МПа и отжигают при температуре 950÷1050оС в течение 1÷1,5 часа.

В настоящее время из патентной и научно-технической литературы не известен биоактивный композиционный материал для замещения костных дефектов, содержащий гидроксиапатит и фторид кальция в предлагаемом соотношении компонентов, а также способ его получения путем обработки смеси гидроксиапатита и фторида кальция в предлагаемых условиях.

Известно, что химическое модифицирование структуры гидроксиапатита за счет использования армирующих добавок, в частности фторида кальция способствует остеогенезу и регенерации твердых тканей при его использовании в качестве костного наполнителя. Однако исследования, проведенные авторами, позволили установить, что улучшить характеристики материала, такие как твердость, можно за счет изменения числа и характера функциональных групп, возникающих в процессе взаимодействия гидроксиапатита и армирующей фазы - фторида кальция при отжиге их смеси. При этом изменение фазового состава, определяющего характеристики материала, в процессе физико-химических превращений, происходящих в системе, зависит от количества вводимого армирующего компонента. Анализ экспериментальных данных, полученных авторами, позволяет сделать вывод, что именно предлагаемое соотношение гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2 - 84÷86 масс./%; CaF2 - 14÷16 масс.%) обеспечивает увеличение твердости биоактивного материала за счет оптимального соотношения ионов фтора (фторида) и гидроксильных групп. Содержание фторид-иона в предлагаемом диапазоне способствует ускорению срастания костей, но не вызывает возможных костных деформаций. Наличие гидроксильных групп повышает устойчивость к биодеградации за счет улучшения адсорбции белка, но увеличения количества гидроксильных групп повышает иммунологические риски и риск инфицирования, а при уменьшении их количества может быть затруднен процесс естественного остеогенеза. Условия получения предлагаемого биоактивного композиционного материала обеспечивают стабильность состава. Известно, что гидроксиапатит частично разлагается с образованием трикальцийфосфата (Ca3(PO4)2 уже при 800оС, при этом отрывается ОН-группа, испаряясь в виде водяного пара. Не только наличие фторида кальция, но определенное соотношение исходных компонентов в совокупности с предлагаемым температурным и временным интервалами отжига позволяет стабилизировать состав конечного продукта, о чем свидетельствует меньшая потеря массы при отжиге, что подтверждают данные рентгено-фазового анализа (см. табл.).

Предлагаемый способ может быть осуществлен следующим образом: в мельнице при одновременном смешивании и измельчении исходных компонентов гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2-CaF2), взятых в массовом соотношении 5,25÷6,14:1, соотвественно. Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200-300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950÷1050°С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материал. При этом степень кристалличности материалов возрастает, о чем свидетельствует увеличение разрешения пиков на рентгенограммах и уменьшение их ширины (выполнялось на дифрактометрах Shimadzu, ДРОН-2.0, излучение CuKα, интервал углов 10°≤ 2Θ ≤ 70°, шаг съемки 0.03°, время на точку 2 секунды, идентификация фаз осуществлялась с помощью картотеки Powder Diffraction File JCPDSD-ICDD PDF2 (set’s 1-47)), что также подтверждают изображения со сканирующего электронного микроскопа (микроскоп JEOL JSM 6390 LA (Япония), коэффициент увеличения от х5 до х300000, разрешающая способность 3.0 нм при 30 кВ). В результате установлено, что при таких режимах происходит взаимодействие в системе Ca10(PO4)6(OH)2-CaF2 с образованием фазы фторапатита, и получают твердый композиционный биоматериал, обладающий равномерной плотной структурой с высокой степенью кристалличности, устойчивый при 1000±50 °C. (см. табл.).

Получение предлагаемого биоматериала иллюстрируется следующими примерами:

Пример 1. Берут 84 грамм гидроксиапатита и 16 грамм фторида кальция (массовое соотношение 5,25:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950 °С в течение 1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.

Пример 1. Берут 85 грамм гидроксиапатита и 15 грамм фторида кальция, помещают в планетарную, вибрационную или шаровую мельницу, истирание ведут до крупности частиц 1-15 мкм (полная гомогенизация). Полученная порошковая смесь прессуется в заготовки (таблетки) при давлении ≥ 200-300 МПа. Затем полученные заготовки помещаются в муфельную печь и подвергаются термообработке при температуре 1000±50 °С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материала. Потеря массы при термообработке и микротвердость в таблице 1.

Пример 2. Берут 80 грамм гидроксиапатита и 20 грамм фторида кальция (массовое соотношение 6,14:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 1050 °С в течение 1 часа. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.

Таблица

Убыль массы и микротвердость композитов Ca10(PO4)6(OH)2-CaF2

Исследуемый биоматериал (содержание СаF2) Температура отжига 1000°С
Потеря массы, % Микротвёрдость, МПа.
10масс.%CaF2 8.80 290
Пример 1 (16 масс.%CaF2) 6.70 980
Приме 2 (14 масс.% CaF2) 6,60 986
20масс.%CaF2 8.55 225
Контрольный образец ГАП (0%CaF2) 9.48 195

Таким образом, авторами предлагается композиционный биоактивный материал (Ca10(PO4)6(OH)2-CaF2, имеющий мелкокристаллическую структуру и повышенную твердость, который может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани.

Способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050С в течение 1-1,5 ч.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 20.
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6af0

Средство для фиксации съемных зубных протезов

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при протезировании больных для коррекции съемных зубных протезов в период адаптации, а также в процессе их постоянного использования. Предлагаемое средство для фиксации съемных зубных...
Тип: Изобретение
Номер охранного документа: 0002558934
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.78ca

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в...
Тип: Изобретение
Номер охранного документа: 0002599039
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.89db

Способ извлечения иттрия из водных солянокислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано в способе для извлечения и концентрирования иттрия из водных растворов. Способ извлечения иттрия из водных солянокислых растворов включает экстракцию смесью органической кислоты и керосина, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002602313
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.db20

Способ извлечения циркония из кислых водных растворов

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных...
Тип: Изобретение
Номер охранного документа: 0002623978
Дата охранного документа: 29.06.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
+ добавить свой РИД