×
29.12.2017
217.015.f51a

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС СЕЛЕКТИВНОЙ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден, фосфор или бор, калий и оксид алюминия, причем он содержит, % мас.: Мо - 4,0-11,0, Со - 1,2-3,5, Р или В - 0,1-1,5, K - 0,5-4,5, S - 2,5-8,5, С - 0,3-5,0, AlO - остальное, катализатор имеет удельную поверхность 90-140 м/г, объем пор 0,2-0,8 см/г, средний диаметр пор 4,2-10,0 нм. Также изобретение включает способ приготовления катализатора и процесс селективной гидроочистки бензина каталитического крекинга. Технический результат заключается в создании нового катализатора, позволяющего обеспечить высокую глубину гидрообессеривания, низкую степень гидрирования олефинов и сохранение октанового числа при получении ультрачистого гидрогенизата. 3 н. и 7 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Производство экологически чистых бензинов в России сталкивается с определенными трудностями. С одной стороны, постоянно ужесточаются экологические и эксплуатационные требования к моторным топливам, с другой - ухудшается качество поступающих на переработку нефтей. Это вызывает необходимость перераспределения бензинового фонда: сокращение доли фракций каталитического риформинга как основного источника ароматических углеводородов и бензола и увеличение доли бензинов каталитического крекинга, изомеризата и алкилата. Ввиду малотоннажности процессов каталитической изомеризации и алкилирования, основная нагрузка по формированию бензинового фонда ложится на бензины каталитического крекинга. Однако даже на современных установках каталитического крекинга, включающих блок предварительной гидроочистки сырья, не удается получить компонент автобензина классов 4 и 5, поскольку высокооктановые бензины каталитического крекинга являются источниками 90% серы при компаундировании товарных топлив.

Для снижения содержания серы в бензинах каталитического крекинга используют два способа - предварительная гидроочистка сырья установки каталитического крекинга и гидроочистка бензина каталитического крекинга. Проблему сложно решить путем предварительной гидроочистки сырья каталитического крекинга, поскольку необходима сверхглубокая очистка вакуумного газойля (до содержания общей серы менее 200 ppm) от трудноудаляемых стерически экранированных сероорганических соединений. Гидроочистка бензина каталитического крекинга (второй способ) на стандартных Al-Ni(Co)-Mo(W) катализаторах протекает не селективно, наряду с реакциями гидродесульфуризации происходит глубокое гидрирование олефиновых углеводородов, что уменьшает октановое число очищенного бензинового компонента. Разработка современных катализаторов селективного гидрогенолиза серосодержащих соединений олефинсодержащего углеводородного сырья является наиболее эффективным решением данной проблемы.

Для создания катализаторов селективной гидроочистки бензинов каталитического крекинга используют методы формирования активного компонента на поверхности оптимального по текстуре и свойствам носителя за счет следующих подходов:

1. Использование в составе носителей и/или катализаторов щелочных и щелочноземельных металлов, подавляющих гидрирующую функцию катализаторов (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998). Недостатком таких катализаторов является низкая концентрация доступных активных центров гидрообессеривания, что не позволяет глубоко протекать реакциям гидрообессеривания для получения компонента товарного бензина с ультранизким содержанием серы.

2. Применение органических модификаторов, повышающих степень сульфидирования нанесенного активного предшественника, и селективность в реакциях гидрообессеривания по отношению к реакциям гидрирования олефинов (US 8236723, B01J 31/34, B01J 21/08, C10G 45/08, 07.08.2012; WO 2007/084438 А2, B01J 23/882, C10G 45/08, 26.07.2007; WO 2007/084439 А1, C10G 45/08, B01J 23/882, B01J 21/08, B01J 35/10, 26.07.2007). Недостатком синтеза таких катализаторов является наличие гидрирующих центров на поверхности активной фазы, что не позволяет провести селективную гидроочистку бензинов каталитического крекинга, особенно при получении гидрогенизата с содержанием серы менее 50 ppm (0.0050% мас.).

Общим недостатком для вышеперечисленных катализаторов является низкая селективность по отношению к нежелательным реакциям гидрирования олефинов при необходимой высокой глубине гидрообессеривания, и как результат - снижение октанового числа до 5 п. по сравнению с исходным бензином. Техническим решением настоящего изобретения является создание катализатора, имеющего триметаллическую сульфидную активную фазу типа «K-Co-Mo-S» с высокой долей активных центров гидрообессеривания и низким содержанием центров гидрирования за счет совместного использования гетерополианинов, соединений кобальта, калия и носителя Al2O3 с умеренно развитой поверхностью, обеспечивающих в процессе сульфидирования образование мультислойных частиц MoS2, органических стабилизаторов-комплексообразователей, обеспечивающих фиксацию атомов промотора Со на ребрах наночастиц MoS2 и ограничивающих размер частиц аморфным углеродом, а также подавление центров гидрирования благодаря использованию щелочного металла калия.

Способ приготовления катализатора пропиткой оксида алюминия совместным раствором всех элементов позволяет обеспечить молекулярный контакт предшественников, необходимый для формирования наноразмерных мультислойных частиц активной фазы «K-Co-Mo-S» оптимального состава и морфологии для проведения процесса селективной гидроочистки бензина каталитического крекинга.

Наиболее близким к предлагаемому решению является катализатор селективной гидроочистки и способ его приготовления, описанные в патенте US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994. Катализатор включает гидрирующий компонент - металлы из группы VIB и VIII Периодической таблицы с содержанием 4-20% мас. и 0.5-10% мас. в пересчете на оксиды соответственно. Носитель катализатора включает магний в количестве 0.5-50% мас. в пересчете на оксид, щелочной металл в количестве 0.02-10% мас.

Способ приготовления селективного катализатора гидроочистки бензина каталитического крекинга включает следующие операции: приготовление первого водного раствора, содержащего растворенные соединения металлов VIB и VIII групп; смешение первого раствора с неорганическим оксидом и образованием пасты, включающей металлы VIB и VIII групп; превращение пасты в композит по меньшей мере одной из форм, перечисленных из ряда: шарик, порошок, таблетки, экструдаты; приготовление второго водного раствора, включающего растворенные соединения магния и щелочного металла; смешение второго водного раствора с композитом и получением пропитанного композита; прокаливание полученного композита с получением катализатора селективной гидроочистки.

Недостатком данного способа приготовления катализатора является то, что используются предшественники металлов из группы VIB и VIII Периодической таблицы, не позволяющие сформировать высокодисперсную активную фазу с высоким содержанием активных центров, а также многостадийность процесса приготовления. В результате, во-первых, не достигается степень гидрообессеривания бензина каталитического крекинга выше 95.5%, во-вторых, при степени гидрообессеривания 80% и выше происходит гидрирование олефиновых углеводородов до 65%, т.е. снижается селективность процесса и, как следствие, октановое число получаемого бензина. Таким образом, каталитические свойства катализатора-прототипа не позволяют получать бензины с ультранизким содержанием серы, сохранением содержания олефиновых углеводородов и значений октанового числа.

Техническим результатом настоящего изобретения является создание нового катализатора, способа приготовления и процесса селективной гидроочистки бензина каталитического крекинга, позволяющие обеспечить высокую глубину гидрообессеривания и низкую степень гидрирования олефинов и, как результат, сохранение октанового числа при получении ультрачистого гидрогенизата. Технический результат достигается за счет катализатора селективной гидроочистки бензина каталитического крекинга, включающего в свой состав кобальт, молибден, фосфор или бор, калий и оксид алюминия, отличающийся тем, что он содержит, % масс.: Мо - 4,0-11,0; Со - 1,2-3,5; Р или В - 0,1-1,5; K - 0,5-4,5; S - 2,5-8,5; С - 0,3-5,0; Al2O3 - остальное; катализатор имеет удельную поверхность 90-140 м2/г, объем пор 0,2-0,8 см3/г, средний диаметр пор 4,2-10,0 нм. Катализатор имеет форму цилиндров или трехлистников. Оксид алюминия по фазовому составу представляет собой γ-Al2O3, δ-Al2O3 или их композиции и имеет удельную поверхность 100-160 м2/г, объем пор 0,4-1,0 см3/г, средний диаметр пор 4,5-10,5 нм.

Способ приготовления катализатора селективной гидроочистки бензина каталитического крекинга пропиткой оксида алюминия раствором предшественников активного компонента с последующей сушкой и сульфидированием, отличающийся тем, что носитель однократно пропитывают водным раствором, имеющим рН 2,0-4,5, содержащим как минимум один из гетерополианионов ряда [Co2Mo10O38H4]6-, [Co(OH)6Mo6O18]4-, [Co(OH)6Mo6O18]3-, Нх[P2Mo5O23](6-х)- (х=0-2), Нх[PMo11CoO40](7-х)- (х=0-2), [ВМо12О40]5-, [PMo12O40]3-, в качестве соединения кобальта используется одно из ряда гидроксид кобальта Со(ОН)2⋅nH2O (n=0,5-5), кобальт углекислый CoCO3⋅nH2O (n=0-5), кобальт углекислый основной 2CoCO3⋅3Со(ОН)2⋅nH2O (n=0,5-5), в качестве соединения калия используется любое из ряда гидроксид калия KOH, карбонат калия K2CO3, фосфат калия K3PO4, гидрофосфат калия K2HPO4, дигидрофосфат калия KH2PO4, борат калия K3BO3, в качестве стабилизатора пропиточного раствора используют карбоновую кислоту, содержащую по меньшей мере одну карбоксильную группу, одну гидроксильную группу и 2-20 углеродных атомов.

Для приготовления катализатора в качестве стабилизатора используется лимонная кислота, используют либо пропитку носителя по влагоемкости, либо из избытка раствора, пропитка гранул носителя проводится после создания вакуума в сосуде, содержащем носитель, пропиточным раствором при температурах 20-50°С. После пропитки катализатор сушат при температуре 120-260°С в потоке воздуха или азота.

Процесс селективной гидроочистки бензина каталитического крекинга, который включает пропускание бензина каталитического крекинга через слой заявляемого катализатора. Процесс проводят при температуре 240-320°С, давлении 0,5-3,0 МПа, объемном расходе сырья 2-8 ч-1, объемном отношении водород/сырье 100-500 м33.

Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению-прототипу.

Катализатор готовят пропиткой 100 г γ-Al2O3 раствором 3.9 г нитрата кобальта Со(NO3)2⋅6H2O, 7.4 г молибдата аммония в 58.7 воды. Полученные образцы сушили при комнатной температуре, далее при 121°С в течение 12 ч и прокаливали при 538°С в течение 2 ч. Затем полученный образец (100 г) пропитывали 6.37 г Mg(NO3)2⋅6H2O в 58.7 г воды. Снова проводили сушку при комнатной температуре, далее при 121°С в течение 12 ч и прокаливали при 538°С в течение 2 ч.

Катализатор содержит, мас. %: Мо - 4,0; Со - 0,9; Mg - 0,5; Na - 0,06; S - 2,8; Al2O3 - остальное.

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Для приготовления пропиточного раствора 8,0 г декамолибдодикобальтовой гетерополикислоты H6[Со2Мо10О38Н4], 1,5 г карбоната кобальта CoCO3⋅H2O, 4,1 г бората калия K3BO3 и 3,0 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 78 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 4,0; Со - 1,2; В - 0,2; K - 2,4; S - 2,9; С - 0,3; Al2O3 - остальное; имеет удельную поверхность 130 м2/г, объем пор 0,56 см3/г и средний диаметр пор 4,4 нм (табл. 1).

Пример 3

Для приготовления пропиточного раствора 12,9 г гексамолибдокобальтовой гетерополикислоты Н4[Со(ОН)6Mo6O18], 2,7 г карбоната кобальта CoCO3⋅H2O, 6,6 г бората калия K3BO3 и 1,0 г гликолевой кислоты C2H4O3 последовательно растворяют в 50 см3 воды при 30-50°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 45°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 140°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,0; Со - 1,8; В - 0,3; K - 3,7; S - 4,4; С - 0,1; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,43 см3/г и средний диаметр пор 5,1 нм (табл. 1).

Пример 4

Для приготовления пропиточного раствора 12,9 г декамолибдодикобальтовой гетерополикислоты Н6[Co2Mo10O38H4], 2,4 г гидроксида кобальта Со(ОН)2⋅H2O, 8,1 г фосфата калия K3PO4 и 3,4 г винной кислоты C4H6O6 последовательно растворяют в 50 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 5 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,0; Со - 1,8; Р - 1,0; K - 3,7; S - 4,6; С - 0,4; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,46 см3/г и средний диаметр пор 5,2 нм (табл. 1).

Пример 5

Для приготовления пропиточного раствора 17,9 г кобальтовой соли пентамолибдодифосфорной кислоты Со3[P2Mo5O23] растворяют в 55 см3 воды, добавляют 5,7 г карбоната калия K2CO3 и 4,5 г молочной кислоты C3H6O3. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,5-4,5.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 5 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,5; Со - 2,4; Р - 0,8; K - 2,6; S - 4,8; С - 0,5; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,46 см3/г и средний диаметр пор 5,2 нм (табл. 1).

Пример 6

В раствор 14,4 г H7[РМо11СоО40] в 55 см3 воды добавляют 3,8 г карбоната кобальта CoCO3⋅H2O, 4,9 г гидроксида калия KOH и 7,5 г лимонной кислоты C6H8O7. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,5-4,5.

Носитель - оксид алюминия, состоящий на 30% мас. из γ-Al2O3 и 70% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 30°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 180°С в течение 4 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,0; Со - 2,2; Р - 0,2; K - 2,8; S - 5,1; С - 0,8; Al2O3 - остальное; имеет удельную поверхность 104 м2/г, объем пор 0,44 см 3/г и средний диаметр пор 5,9 нм (табл. 1).

Пример 7

Для приготовления пропиточного раствора 28,1 г додекамолибдофосфорной кислоты H3[PMo12O40], 10,8 г карбоната калия K2CO3, 8,4 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅H2O и 16,4 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 102 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - оксид алюминия, состоящий на 50% мас. из γ-Al2O3 и 50% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 180°С в течение 4 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 11,1; Со - 3,4; Р - 0,3; K - 4,5; S - 8,2; С - 1,3; Al2O3 - остальное; имеет удельную поверхность 142 м2/г, объем пор 0,54 см3/г и средний диаметр пор 9,6 нм (табл. 1).

Пример 8

Для приготовления пропиточного раствора 28,1 г додекамолибдофосфорной кислоты Н3[PMo12O40], 10,8 г карбоната калия K2CO3, 8,4 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅H2O и 10,5 г яблочной кислоты С4Н6О5 последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 72 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель γ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°С в течение 6 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 11,0; Со - 3,4; Р - 0,3; K - 4,5; S - 8,2; С - 1,3; Al2O3 - остальное; имеет удельную поверхность 138 м2/г, объем пор 0,52 см3/г и средний диаметр пор 9,7 нм (табл. 1).

Пример 9

Для приготовления пропиточного раствора 14,5 г додекамолибдоборной гетерополикислоты H5[BMo12O40], 6,3 г карбоната калия K2CO3, 4,9 г карбоната кобальта CoCO3⋅H2O, и 9,5 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 68 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель δ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,2; Со - 2,2; В - 0,1; K - 2,9; S - 5,2; С - 1,2; Al2O3 - остальное; имеет удельную поверхность 92 м2/г, объем пор 0,42 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 10

Для приготовления пропиточного раствора 14,0 г додекамолибдоборной гетерополикислоты H5[BMo12O40], 6,3 г карбоната калия K2CO3, 4,9 г карбоната кобальта CoCO3⋅H2O, и 9,5 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 68 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель δ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 200°С в течение 3 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % H2S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,0; Со - 2,2; В - 0,1; K - 2,9; S - 5,4; С - 1,0; Al2O3 - остальное; имеет удельную поверхность 106 м2/г, объем пор 0,46 см3/г и средний диаметр пор 6,1 нм (табл. 1).

Катализаторы испытывали в процессе гидроочистки бензина каталитического крекинга, выкипающего в пределах 110-220°С, с содержанием серы 0.0110% мас. и олефинов 12.0% масс. и октановым числом 92.0 п. (по исследовательскому методу). В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Условия испытания: давление водорода 1,0-3,0 МПа, кратность циркуляции водорода 100-500 нл/л сырья, объемная скорость подачи сырья 2,0-8,0 ч-1, температура в реакторе 240-320°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:

где и - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые катализаторы превосходят по активности и селективности прототип. Показатели процесса при гидроочистке бензина каталитического крекинга позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления. Процесс гидроочистки бензина каталитического крекинга в присутствии заявляемых катализаторов обеспечивает получение бензина с ультранизким содержанием серы и сохранением значения его октанового числа на исходном уровне.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 211.
29.05.2018
№218.016.58f3

Способ производства двойных съедобных пленок с использованием в одном слое яблочного сока и альгината натрия

Изобретение относится к пищевой промышленности, преимущественно двойным съедобным пленкам. Способ производства двойных съедобных пленок из яблочного сырья предусматривает удаление у яблок несъедобных частей, обработку яблок водяным паром в течение 10-30 мин, добавление к полученной массе...
Тип: Изобретение
Номер охранного документа: 0002655216
Дата охранного документа: 24.05.2018
29.05.2018
№218.016.5977

Способ активации катализатора селективного гидрообессеривания бензина каталитического крекинга

Изобретение относится к способу активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Данный способ сочетает в себе разделение процесса активации на две стадии: на первой стадии осуществляют сульфидирование катализатора путем пропускания через слой...
Тип: Изобретение
Номер охранного документа: 0002655030
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5cbe

Способ синтеза триамил цитрата

Изобретение относится к способу синтеза триамил цитрата - продукта с хорошими пластифицирующими свойствами, имеющего температуру вспышки 205-210°C, 4 класс опасности, вследствие чего он может быть использован в качестве нетоксичного пластификатора для ПВХ-композиций в детских игрушках, изделиях...
Тип: Изобретение
Номер охранного документа: 0002656105
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d19

Способ электромагнитного контроля сварных соединений и устройство для его осуществления

Группа изобретений относится к неразрушающим методам контроля и может быть использована для дефектоскопии сварных соединений труб и листовых изделий из ферромагнитных материалов. Сущность изобретений заключается в том, что возбуждение переменных магнитных потоков в сварном шве и околошовной...
Тип: Изобретение
Номер охранного документа: 0002656112
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5ddf

Кумулятивно-торпедный перфоратор

Изобретение относится к области нефтяных скважин и, в частности, к взрывным устройствам для перфорации обсадных труб и цементного кольца для создания в породе каналов, по которым нефть и газ могут поступать в ствол скважины. Кумулятивно-торпедный перфоратор состоит из корпуса, электрического...
Тип: Изобретение
Номер охранного документа: 0002656262
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e64

Баллистическая установка для создания высокотемпературных высокоскоростных потоков частиц

Изобретение относится к устройствам для создания высокотемпературных высокоскоростных потоков частиц, которые могут быть использованы, в частности для нанесения порошкового покрытия на изделия любой формы. Установка для нанесения порошкового покрытия с использованием высокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002656316
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5f8c

Теплоноситель

Изобретение относится к органическому теплоносителю, который может быть использован для обогрева технологической аппаратуры в широких областях промышленности. Теплоноситель включает, мас.%: дифенил 9,00-11,00; дифенилоксид 17,50-18,50; н-тридекан 71,50-72,50. Изобретение обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002656666
Дата охранного документа: 06.06.2018
14.06.2018
№218.016.61ee

Образец для испытания на внецентренное сжатие

Изобретение относится к области строительства, в частности к испытаниям образцов на внецентренное сжатие. Образец выполнен в виде четырехугольной призмы с двумя симметричными парными сферическими лунками для центрирующих элементов, находящимися на верхней и нижней опорной поверхности образца,...
Тип: Изобретение
Номер охранного документа: 0002657299
Дата охранного документа: 13.06.2018
14.06.2018
№218.016.61f9

Способ оценки огнестойкости ограждающей конструкции здания по критерию теплоизолирующей способности

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации ограждающих конструкций зданий по их показателям сопротивления воздействию высоких температур при пожаре. Оценку огнестойкости ограждающей конструкции здания проводят без разрушения, по...
Тип: Изобретение
Номер охранного документа: 0002657328
Дата охранного документа: 13.06.2018
16.06.2018
№218.016.6309

Способ генерирования диоксида хлора

Изобретение относится к области медицины, конкретно к дезинфекции, и может быть применено для дезинфекции изделий медицинского назначения, помещений, предметов ухода за больными, лабораторной посуды при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля, на...
Тип: Изобретение
Номер охранного документа: 0002657432
Дата охранного документа: 13.06.2018
Показаны записи 71-80 из 106.
29.04.2019
№219.017.4177

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид...
Тип: Изобретение
Номер охранного документа: 0002386476
Дата охранного документа: 20.04.2010
08.06.2019
№219.017.75b4

Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины

Изобретение относится к области нефтепереработки, а более конкретно к производству канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины. Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002690926
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7646

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002690947
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.8103

Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие...
Тип: Изобретение
Номер охранного документа: 0002691071
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8107

Способ гидрогенизационного облагораживания углеводородного сырья

Изобретение относится к способам гидрогенизационной переработки углеводородного сырья в присутствии каталитической системы и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ гидрогенизационного облагораживания углеводородного сырья при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002691067
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8124

Способ получения катализатора деметаллизации нефтяных фракций

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия...
Тип: Изобретение
Номер охранного документа: 0002691069
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.812f

Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, VO, FeO, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или...
Тип: Изобретение
Номер охранного документа: 0002691078
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.813b

Способ совместного извлечения мышьяка и хлора из нефтяных дистиллятов

Изобретение относится к области нефтепереработки и нефтехимии, а именно, к удалению отравляющих соединений для катализаторов нефтепереработки из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения...
Тип: Изобретение
Номер охранного документа: 0002691072
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8178

Способ получения каталитически-сорбционного материала и способ извлечения мышьяка в его присутствии

Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других...
Тип: Изобретение
Номер охранного документа: 0002691070
Дата охранного документа: 10.06.2019
+ добавить свой РИД