×
29.05.2018
218.016.5977

Результат интеллектуальной деятельности: Способ активации катализатора селективного гидрообессеривания бензина каталитического крекинга

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Данный способ сочетает в себе разделение процесса активации на две стадии: на первой стадии осуществляют сульфидирование катализатора путем пропускания через слой катализатора водородсодержащего газа и сероводорода с концентрацией HS в диапазоне 1-10% об. при нагревании от 120 до 400°С и давлении из диапазона 0,1-4,0 МПа; на второй стадии осуществляют модифицирование сульфидированного катализатора путем пропускания через слой катализатора растворенного в углеводородном сырье комплексного соединения металла IA и/или IIA группы в токе водородсодержащего газа при температуре из диапазона 100-300°С и давлении из диапазона 0,1-3,0 МПа. Технический результат заключается в увеличении селективности катализатора в отношении реакций обессеривания по сравнению с реакциями гидрирования в процессе селективной гидроочистки бензина каталитического крекинга и сохранении его октанового числа. 5 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к области химии, в частности к способу активации катализатора селективной гидроочистки бензина каталитического крекинга и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Процесс гидроочистки нефтяных фракций, как правило, проводят на биметаллических Ni(Co)Mo(W) катализаторах, нанесенных на γ-Al2O3 или других носителях. При приготовлении данных каталитических систем активные компоненты наносятся из неорганических соединений с последующей сушкой/прокаливанием. Далее катализатор переводят из неактивной оксидной формы в активную - сульфидную - путем сульфидирования - пропускания через слой катализатора, загруженного в реактор, прямогонного сырья с добавлением избыточного количества серы из сероорганического соединения или газообразной смеси сероводорода и водорода [, В.S. Clausen, F.Е. Massoth, Hydrotreating catalysis. Science and technology, (J.R. Anderson and M. Boudart, Eds) Catalysis - Science and Technology Vol. 11. Springer - Verlag, Berlin, Heidelberg, New York, 1996, 310 p.].

Тип перерабатываемого сырья является определяющим фактором в выборе каталитической композиции для процесса его гидроочистки. Так, бензин каталитического крекинга (БКК) характеризуется большим содержанием серы и олефинов, обеспечивающих ему высокое октановое число. Поэтому традиционные катализаторы гидроочистки топлив не эффективны при переработке подобного сырья, так как наряду с реакциями удаления серосодержащих соединений протекает глубокое гидрирование непредельных углеводородов, которое приводит к значительным потерям октанового числа [Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологические и экологические аспекты. М.: Техника, 2001]. Существует два основных приема, применяющихся при разработке катализаторов гидроочистки БКК, направленное формирование активной фазы с заданными характеристиками и подавление гидрирующей активности путем введения модифицирующих добавок на стадии синтеза. Известно, что способ сульфидирования оказывает значительное влияние на механизм формирования активной фазы, ее морфологию и, как результат, каталитические свойства.

Существующие варианты сульфидирования условно можно разделить на газофазное смесью H2S/H2 и жидкофазное в растворе сульфидирующего агента или сырьем с высоким содержанием серы (US 4149965, C10G 23/02, 17.04.1979; US 6197718 В1, B01J 27/02, B01J 27/047, B01J 27/051, C01G 45/04, C01G 45/60, 06.03.2001; US 2002/0139716 A1, C10G 45/06; C10G 45/08, 03.10.2002; US 7297252 B2, C10G 45/04, 20.11.2007).

Общим недостатком данных способов сульфидирования является формирование активных центров как для реакций обессеривания, так и для реакций гидрирования, в результате селективность подобных катализаторов не достаточно высока. Техническим решением настоящего изобретения является применение способов подавления гидрирующей активности путем модифицирования центров гидрирования с помощью щелочных и щелочноземельных добавок на стадии формирования активной фазы в процессе сульфидирования, а не в процессе синтеза оксидного предшественника, как это применяется для других катализаторов гидроочистки БКК (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998).

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является способ активации катализатора гидроочистки бензина каталитического крекинга, описанный в патенте US 7297252 В2, C10G 45/04, 20.11.2007. Способ активации включает нагрев катализатора в присутствии смеси сероводорода и водорода при давлении из диапазона 790-3548 кПа, а также олефинсодержащего бензина до температуры из диапазона 177-232°С с последующей выдержкой и нагревом до температуры из диапазона 288-371°С. В качестве олефинсодержащего сырья используются бензиновые фракции процессов каталитического крекинга, коксования, гидрокрекинга, термического крекинга. При этом заявленное содержание непредельных углеводородов находится в диапазоне 5-50 мас. %.

Недостатком данного способа активации катализатора является то, что высокое содержание непредельных углеводородов в сульфидирующем сырье может привести к преждевременному закоксовыванию катализатора и, как результат, сокращению межрегенерационного пробега. Кроме того, недостатком данного способа активации также является то, что использование олефинсодержащего сырья не приводит к значительному снижению гидрирующей активности и росту селективности в отношении реакций удаления серы.

Техническим результатом настоящего изобретения является применение нового способа активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Технический результат достигается за счет разделения процесса активации на две стадии: на первой стадии осуществляется сульфидирование катализатора путем пропускания через слой катализатора водородсодержащего газа и сероводорода с концентрацией H2S в диапазоне 1-10% об. при нагревании от 120 до 400°С и давлении из диапазона 0,1-4,0 МПа; на второй стадии осуществляется модифицирование сульфидированного катализатора путем пропускания через слой катализатора растворенного в углеводородном сырье комплексного соединения металла IA и/или IIA группы в токе водородсодержащего газа при температуре из диапазона 100-300°С и давлении из диапазона 0,1-3,0 МПа.

На первой стадии сероводород образуется путем пропускания через слой катализатора прямогонного бензина, содержащего органический сульфид и/или полисульфид с концентрацией серы в диапазоне 0,6-6% мас.

На второй стадии количество вносимого в прямогонный бензин металла IA и/или IIA группы составляет 500-5000 ppm, при этом комплексное соединение, из которого вносится металл IA и/или IIA группы, образовано из органического соединения, содержащего, по меньшей мере, 8-20 углеродных атомов и/или одну из следующих функциональных групп: гидроксильную-ОН, карбоксильную -СООН, полисульфидную >Sn. Катализатор выдерживают в контакте с прямогонным бензином, содержащим соединение металла IA и/или IIA группы, в течение 2-10 ч при объемном расходе 2,5-7,5 ч-1, объемном отношении водородсодержащий газ/бензин 100-800 нм33, объемном расходе бензина 1-10 ч-1.

На первой стадии процесса сульфидирования катализатор выдерживают в контакте с прямогонным бензином, содержащим органический сульфид и/или полисульфид, сначала при температуре из диапазона 200-250°С в течение 6-12 ч, а затем при температуре из диапазона 320-350°С в течение 6-10 ч. В качестве органического сульфида и/или полисульфида используют любое соединение из ряда диметилсульфид, диметилдисульфид, ди-трет-бутилполисульфид, ди-трет-нонилполисульфид.

Условия проведения активации катализатора и состав сульфидирующей смеси приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Для исследований был использован лабораторный СоМо/Al2O3 катализатор следующего состава: содержание Мо - 12% мас., Со - 4% мас., остальное - Al2O3. Оксидный образец катализатора загружался в трубчатый реактор в количестве 15 см3 в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора. Катализатора разбавлялся SiC до общего объема 30 см3. Далее образец активировался согласно одному из нижеприведенных примеров и испытывался в процессе гидроочистки бензина каталитического крекинга.

Пример 1

Активация катализатора согласно известному техническому решению - прототипу.

Катализатор нагревали в токе H2S + Н2 (10% об. H2S) и тяжелого бензина каталитического крекинга (фракция 110-220°С) с содержанием серы 1500 ppm при следующих технологических параметрах: давление 2,0 МПа, ОСПС 6,5 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 8 ч при 205°С и в течение 6 ч при 340°С. Далее катализатор охлаждали до рабочей температуры и испытывали.

Примеры 2-9 иллюстрируют предлагаемое техническое решение.

Пример 2

На I стадии катализатор нагревали в токе H2S + Н2 (10% об. H2S) при следующих технологических параметрах: давление 1,0 МПа, объемный расход смеси 500 ч-1, скорость нагрева 25°С/ч, температура 400°С. Катализатор выдерживали при максимальной температуре в течение 2 ч. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и олеата магния Mg(C18H33O2)2 (2500 ppm магния) с объемным расходом 5,0 ч-1 в течение 3 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 3

На I стадии катализатор нагревали в токе H2S + Н2 (5% об. H2S) при следующих технологических параметрах: давление 1,5 МПа, объемный расход смеси 500 ч-1, скорость нагрева 50°С/ч, температура 380°С. Катализатор выдерживали при максимальной температура в течение 2 ч. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и калиевой соли липоевой кислоты K(C8H13O2S2) (1000 ppm калия) с объемным расходом 2,5 ч-1 в течение 4 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 4

На I стадии через катализатор пропускали смесь ПБФ и диметилсульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 5,0 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 220°С и в течение 8 ч при 320°С. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и олеата магния Mg(C18H33O2)2 (500 ppm магния) с тем же расходом в течение 8 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 5

На I стадии через катализатор пропускали смесь ПБФ и диметилдисульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 10 ч при 220°С и в течение 6 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и лаурата калия К(C12H23O2) (1000 ppm калия) с тем же расходом в течение 5 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 6

На I стадии через катализатор пропускали смесь ПБФ и ди-трет-бутилполисульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 50°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 210°С и в течение 6 ч при 320°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и липолеата натрия Na(C18H31O2) (2500 ppm натрия) с тем же расходом в течение 6 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 7

На I стадии через катализатор пропускали смесь ПБФ и ди-трет-нонилполисульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 5,0 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 230°С и в течение 8 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и стеарата кальция Ca(C18H35O2)2 (5000 ppm кальция) с тем же расходом в течение 3 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 8

На I стадии через катализатор пропускали смесь ПБФ и диметилсульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 7,5 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 50°С/ч. Катализатор выдерживали при двух температурах: в течение 10 ч при 240°С и в течение 6 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и пальмитата натрия Na(C16H31O2) (1000 ppm натрия) с расходом 7,5 ч-1 в течение 2 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 9

На I стадии через катализатор пропускали смесь ПБФ и диметилдисульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 8 ч при 240°С и в течение 8 ч при 330°С. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и калиевой соли липоевой кислоты K(C8H13O2S2) (2500 ppm калия) с тем же расходом в течение 6 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Катализаторы испытывали в процессе гидроочистки БКК, выкипающего в пределах 114-221°С, с содержанием серы 0.013% мас. и олефинов 12.8% мас. и октановым числом 92.0 п. (по исследовательскому методу). Условия испытания: давление водорода 1,5 МПа, кратность циркуляции водорода 300 нл/л сырья, объемная скорость подачи сырья 3,2 ч-1, температура в реакторе 280°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:

где xS и хОУ - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые способы активации позволяют получить катализаторы, превосходящие по активности и селективности прототип. Показатели процесса при гидроочистке БКК позволяют сделать вывод о высокой эффективности заявляемых способов активации катализаторов.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 191.
20.04.2016
№216.015.35e3

Способ получения композиционных материалов для строительства на основе переработанных отходов

Изобретение может быть использовано при производстве композиционных материалов, которые могут быть применены в строительстве, рекультивации полигонов твердых бытовых отходов и полигонов промышленных отходов, для технической и биологической рекультивации нарушенных земель. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002581178
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.8b89

Способ оценки огнестойкости стальной фермы здания

Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность:осуществляютпроведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева...
Тип: Изобретение
Номер охранного документа: 0002604478
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c1b

Способ оценки огнестойкости железобетонной фермы здания

Изобретение относится к области пожарной безопасности зданий и сооружений, в частности оно может быть использовано для классификации железобетонных ферм зданий по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание растянутых и сжатых элементов железобетонной фермы...
Тип: Изобретение
Номер охранного документа: 0002604820
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.916f

Способ получения диэфиров 5,7-диметил-3-карбокси-1-адамантилуксусной кислоты

Изобретение относится к способу получения диэфиров 5,7-диметил-3-карбокси-1-адамантилуксусной кислоты, которые могут быть использованы в качестве ключевых компонентов базовых основ синтетических индустриальных масел. Способ получения диэфиров заключается во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002605936
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a12e

Способ замены каменного столба здания

Изобретение относится к области строительства и может быть использовано при реконструкции, усилении и восстановлении сильно поврежденных несущих конструкций зданий, более конкретно для замены аварийной кладки столбов. Технический результат - обеспечение прочности и устойчивости каменных...
Тип: Изобретение
Номер охранного документа: 0002606478
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a365

Устройство для замены каменного столба здания

Изобретение относится к области строительства и может быть использовано при ремонте, усилении и реконструкции зданий, более конкретно для замены аварийного каменного столба. Технический результат заключается в повышении жесткостных, прочностных и деформативных характеристик каменной...
Тип: Изобретение
Номер охранного документа: 0002607124
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae0b

Способ очистки сточных вод

Изобретение может быть использовано для очистки сточных вод от ионов хрома, хлоридов, жиров, СПАВ и взвешенных веществ. Для осуществления способа сточные воды подают в устройство цилиндрической формы (1), сначала в отстойник (2), далее во флотатор (3) с зоной флотации и зоной отстаивания во...
Тип: Изобретение
Номер охранного документа: 0002612724
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae9e

Состав для повышения нефтеотдачи пласта

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пласта, и предназначено для использования при разработке и эксплуатации нефтяных месторождений. Состав для повышения нефтеотдачи пласта, включающий неионогенное и анионоактивное...
Тип: Изобретение
Номер охранного документа: 0002612773
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aea0

Способ получения нерацемического 1-(адамант-1-ил)-2-(2-нитро-1-фенилэтил)бутан-1,3-диона

Изобретение относится к способу получения нерацемического 1-(адамант-1-ил)-2-(2-нитро-1-фенилэтил)бутан-1,3-диона формулы I. Способ осуществляют путем энантиоселективного присоединения 1-(адамант-1-ил)бутан-1,3-диона к ω-нитростиролу в присутствии комплекса никеля формулы II в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002612966
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b000

Способ работы парогазовой установки электростанции

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Технический результат - повышение надежности и экономичности работы парогазовой установки электростанции. Предлагается способ работы парогазовой установки электростанции, по которому органическое...
Тип: Изобретение
Номер охранного документа: 0002611138
Дата охранного документа: 21.02.2017
Показаны записи 1-10 из 57.
27.06.2013
№216.012.4fc1

Способ приготовления катализаторов и катализатор для глубокой гидроочистки нефтяных фракций

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан способ приготовления катализатора, включающий пропитку...
Тип: Изобретение
Номер охранного документа: 0002486010
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6a87

Состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья

Изобретение относится к катализаторам и их получению. Описан катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, содержащий соединения...
Тип: Изобретение
Номер охранного документа: 0002492922
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7ca8

Катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки масляных фракций и рафинатов селективной очистки, характеризующийся следующим соотношением компонентов, % мас.: оксид молибдена (MOo) 12,0-20,0, оксид вольфрама (WO) 1,0-6,0, оксид никеля или оксид кобальта (NiO или CoO)...
Тип: Изобретение
Номер охранного документа: 0002497585
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ca9

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки нефтяных фракций, в котором в качестве носителя используется смесь оксида алюминия и борофосфата переменного состава, образующегося на стадии прокаливания носителя из HBO и HPO, при следующем содержании компонентов, %...
Тип: Изобретение
Номер охранного документа: 0002497586
Дата охранного документа: 10.11.2013
10.04.2015
№216.013.3bed

Способ гидрообработки рафинатов масляных фракций в присутствии системы катализаторов

Изобретение относится к способу гидрообработки рафинатов масляных фракций в присутствии системы катализаторов с последующей депарафинизацией растворителем продукта. Данная система катализаторов содержит оксиды никеля, кобальта, молибдена, вольфрама, алюминия. При этом гидрообработку масляных...
Тип: Изобретение
Номер охранного документа: 0002546829
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5e67

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с...
Тип: Изобретение
Номер охранного документа: 0002555708
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6465

Катализатор, способ его приготовления и процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья

Изобретение относится к катализатору селективного гидрообессеривания олефинсодержащего углеводородного сырья. Данный катализатор состоит из соединений металлов Со или Ni, Mo и Na или К, нанесенных на носитель. При этом предлагаемый катализатор содержит биметаллическое комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002557248
Дата охранного документа: 20.07.2015
27.11.2015
№216.013.94af

Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору глубокой гидроочистки углеводородного сырья, состоящему из одно или несколько биметаллических комплексных соединений металлов VIII и VIB групп, нанесенных на модифицированный носитель определенного состава. Катализатор имеет удельную поверхность 180-350 м/г,...
Тип: Изобретение
Номер охранного документа: 0002569682
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a3bf

Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору гидрообессеривания углеводородного сырья, состоящему из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [CoMoOH], [Co(OH)MoO], [Ni(OH)MoO], [NiMoOH], [PMoO], [РМоО], [SiMoO], [Co(OH)WO], [PWO], [SiWO], [PMoWO] (где n=1-11),...
Тип: Изобретение
Номер охранного документа: 0002573561
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c442

Способ получения носителя на основе активного оксида алюминия для катализаторов гидроочистки

Изобретение относится к способу получения носителя на основе активного оксида алюминия для катализаторов гидроочистки. Данный способ включает осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, обработку кислотой, формовку, сушку и прокаливание. При...
Тип: Изобретение
Номер охранного документа: 0002574583
Дата охранного документа: 10.02.2016
+ добавить свой РИД