×
29.04.2019
219.017.4177

КАТАЛИЗАТОР ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид алюминия, оксид кобальта и фосфорномолибденовый гетерополикомплекс, или ванадиймолибденовый гетерополикомплекс, или фосфорванадиймолибденовый гетерополикомплекс при следующем содержании компонентов, мас.%: фосфорномолибденовый гетерополикомплекс, [Р·(МоО)] 14,3-27,5; оксид кобальта СоО 3,2-8,5; оксид алюминия 64,0-82,5; или фосфорнованадиймолибденовый гетерополикомплекс, [Р·(VO)МоО)] 14,8-28,4; оксид кобальта СоО 3,2-8,5; оксид алюминия 63,1-82,0; или ванадиймолибденовый гетерополикомплекс, [V·(МоО)] 14,4-27,8; оксид кобальта СоО 3,2-8,5; оксид алюминия 63,7-82,4. Способ приготовления катализатора включает пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп, причем готовится совместный пропиточный раствор, содержащий гетерополисоединение молибдена, выбранное из (NH)[PMoO]·10HO, (NH)[PVMoO]·8HO или (NH)[VMoO]·HO и нитрат кобальта Со(NO)·6HO при мольном соотношении Мо/Со, равном 1,7-2,3, стабилизированный 25-35 мл 30%-ного HO на 100 мл пропиточного раствора при рН среды 1,5-5,0 и производится однократная пропитка оксида алюминия с последующей сушкой и прокаливанием при температурах не выше 400°С. Техническим результатом изобретения является катализатор с заданными свойствами оксидного предшественника сульфидной фазы и способ его приготовления, в котором осуществляется контакт на молекулярном уровне между основным активным компонентом (молибденом) и модификатором (Р и/или V) в строго заданных соотношениях. 2 н. и 1 з.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известные катализаторы для гидроочистки нефтяных фракций содержат молибден и/или вольфрам и кобальт и/или никель в оксидной форме, нанесенные на поверхность пористого термостойкого оксида металла. Известны также каталитические композиции, включающие различные модифицирующие добавки. Так, согласно [RU 2197323, B01J 23/88, B01J 21/12, опубл. 27.01.2003] в носитель, оксид алюминия, вносятся частично или в полном объеме модифицирующие соединения элементов: Si, В, F, Р и др. Согласно [А.С. 1657227 СССР, 01J 37/02. №4658231/04; заявл. 19.12.88; опубл. 23.06.91. Бюл. №23 - 3 с.] модифицирующая добавка ванадия, а также молибден вносится в пептизированный гидроксид алюминия, производятся формовка, сушка, прокаливание и пропитка прокаленного носителя раствором соли никеля. Оба эти технических решения дают возможность производить недорогие модифицированные катализаторы, которые недостаточно активны в глубокой гидроочистке нефтяных фракций.

Известным способом получения катализаторов гидроочистки является экструзия массы гидроксида алюминия, смешанной с солями Со и/или Ni и Мо и/или W. В этом случае активные компоненты добавляют в пептизированный какой-либо одноосновной кислотой гидроксид алюминия (RU 2189860, B01J 37/04, 23/882, 27.09.02; 2137541, B01J 23/88, C10G 45/08, 20.09.99). В качестве предшественников активного компонента используют трудно растворимые соли молибдена и вольфрама, в основном аммоний молибденовокислый (NH4)6Mo7O24·4H2O, и соли кобальта и никеля, в основном нитраты (RU 2137541, B01J 23/88, 20.09.99). Главным недостатком катализаторов, полученных по данному способу, является их низкая активность, не позволяющая проводить глубокую гидроочистку нефтяных фракций. Это объясняется тем, что часть внесенных в массу гидроксида алюминия активных компонентов не находится на активной поверхности катализатора, а заключено в объеме Al2O3.

Другим известным способом получения катализаторов гидроочистки является способ пропитки оксида алюминия растворами соединений активных компонентов, сушки и прокаливания. Нанесение активных компонентов осуществляют как последовательной пропиткой из отдельных растворов, так и одностадийной пропиткой из совместного раствора. Для стабилизации совместного раствора соединений Co(Ni) и Mo(W) добавляют в пропиточные растворы минеральные кислоты, в основном фосфорную кислоту. Основным недостатком совместных пропиточных растворов соединений Co(Ni) и Mo(W), стабилизированных неорганическими фосфорсодержащими кислотами, является их низкая устойчивость в присутствии избытка фосфорной кислоты и NH4+ иона из-за выпадения осадков фосфатов Со или Ni и фосформолибдатов аммония. Для создания устойчивых совместных пропиточных растворов используют также концентрированный раствор аммиака, который образует комплексные соединения с Co(Ni), что не позволяет образоваться осадкам молибдатов этих металлов. В случае аммиачной пропитки в недостаточно концентрированном растворе аммиака возможно выпадение осадков молибдатов Со или Ni.

Согласно [RU 2313389, B01J 23/882, B01J 27/885, опубл. 27.12.2007] пропиточный раствор стабилизируют ортофосфорной и лимонной кислотой. Недостатком в данном случае является присутствие фосфорной кислоты в растворе, что может привести к снижению его устойчивости. Молибденсодержащие анионы в зависимости от рН раствора могут иметь различную степень полимеризации молибдена, образуя изополианионы. Использование в качестве комплексообразователя органических кислот приводит к тому, что степень полимеризации молибдена в растворе является неопределенной и зависит от многих факторов. В результате невозможно создание оксидного предшественника активной фазы сульфидных молибденсодержащих катализаторов с определенной, заранее заданной степенью полимеризации молибдена.

Аналогом является катализатор гидроочистки нефтяных фракций и способ его приготовления [Пат. 2147255 РФ, МПК7 B01J 23/88, C10G 45/08. №98105317/04; заявл. 17.03.98; опубл. 27.01.2000. БИ №10 - 6 с.]. Описываемый катализатор содержит 10-14% оксида молибдена, 3-5% оксида никеля или оксида кобальта, 1,02-4,08% кремневольфрамового комплекса, остальное - оксид алюминия. Основным недостатком данного катализатора является низкое содержание гетерополикомплекса вольфрама (активного комонента) и кремния (модификатора), который образуется при прокаливании катализатора после пропитки носителя кремневольфрамовой кислотой. Описывается также способ получения этого катализатора. Основным недостатком данного способа является то, что главный активный компонент - молибден - в количестве 10-14% вносится в пептизированную массу гидроксида алюминия, после чего производятся формовка экструзией, сушка и прокаливание. В результате существенная часть молибдена находится не на активной поверхности катализатора, а в объеме инертного в катализе оксида алюминия. Нанесение промотора - никеля или кобальта - осуществляется на сформированную поверхность носителя из совместного раствора кремневольфрамовой кислоты и нитрата никеля и направлено на снижение образования алюмоникелевой шпинели, но прокаливание готового катализатора при 500°С приводит к миграции части Со или Ni в объем оксида алюминия и образованию шпинели, что исключает эту часть промотора из катализа.

Техническое решение позволяет проводить глубокую гидроочистку нефтяных фракций как прямогонных, так и вторичного происхождения. Предлагаются катализатор, содержащий на активной поверхности фосформолибденовый, или ванадиймолибденовый, или фосфорванадиймолибденовый гетерополикомплекс молибдена, и способ его приготовления, при котором на стадии пропитки оксидной формы катализатора осуществляется контакт на молекулярном уровне между основным активным компонентом (молибденом), модификатором (Р и/или V) и промотором (кобальтом) в строго заданных соотношениях. Ограничение температуры прокаливания готового катализатора (не выше 400°С) вводится с целью предотвращения полного термического разложения гетерополикомплекса и сохранения его структуры на поверхности катализатора. После сульфидирования оксидного предшественника катализатор CoMoS/Al2O3 имеет регулярную слоистую структуру, более высокую дисперсность активной фазы, которая промотирована кобальтом и модифицирована добавками Р и/или V. Модифицированная сульфидная фаза имеет более высокую Льюисовскую кислотность, подвижность сульфидной серы и более высокую плотность анионных вакансий. Именно анионные вакансии отвечают не только за реакции гидрогенолиза связи C-S, но и за гидрирование ароматических колец в производных тиофена. В нефтяных фракциях вторичного происхождения содержатся устойчивые соединения серы, такие, как дибенз-, нафтбенз- и динафттиофены, особенно алкилзамещенные. Известно, что превращения таких соединений протекают по нескольким механизмам, один из которых включает стадию гидрирования ароматических фрагментов гибридных молекул.

Отличительным признаком предлагаемого изобретения является совокупность предлагаемых решений, включающая: катализатор глубокой гидроочистки нефтяных фракций, содержащий оксид алюминия, оксид кобальта и фосфорномолибденовый гетерополикомплекс, или ванадиймолибденовый гетерополикомплекс, или фосфорнованадиймолибденовый гетерополикомплекс при следующем содержании компонентов, мас.%:

фосфорномолибденовый гетерополикомплекс
[Р·(МоО3)12] 14,3-27,5
оксид кобальта СоО 3,2-8,5
оксид алюминия 64,0-82,5

или

фосфорнованадиймолибденовый гетерополикомплекс
[Р·(V2O5)0,5(МоО3)11] 14,8-28,4
оксид кобальта СоО 3,2-8,5
оксид алюминия 63,1-82,0

или

ванадиймолибденовый гетерополикомплекс
[V·(МоО3)12] 14,4-27,8
оксид кобальта СоО 3,2-8,5
оксид алюминия 63,7-82,4

Использование в качестве исходных соединений молибдена для синтеза катализаторов гетерополисоединений (NH4)3[PMo12O40]·10H2O, (NH4)3[PVMo11O40]·8H2O, (NH4)3[VMo12O40]·10H2O, в состав молекул которых одновременно входят основной активный компонент (Мо) и модификатор; использование для пропитки носителя совместного пропиточного раствора указанных гетерополисоединений молибдена и нитрата кобальта, стабилизированного 25-35 мл 30%-ного H2O2 на 100 мл пропиточного раствора; мольное соотношение Мо/Со=1,70-2,30 в пропиточном растворе и в катализаторе, необходимое для создания промотированной сульфидной фазы; рН пропиточного раствора 1,5-5,0, при котором возможно существование вышеуказанных гетерополисоединений; вакуумирование навески носителя перед контактом его с пропиточным раствором, позволяющее проводить равномерную пропитку всей активной поверхности, включая поверхность «тупиковых» пор; использование повышенных температур пропиточного раствора при высокой концентрации соединения молибдена в нем, что позволяет сохранять его химическую и физическую стабильность; завершающее прокаливание катализатора при температурах не выше 400°С, что приводит к полному отщеплению аммиака, входящего в состав иона аммония, но не разрушает структуру вышеуказанных гетерополикомплексов (подтверждено экспериментами, сочетающими ДТА и ПК-спектроскопию). Данные решения в совокупности дают возможность синтезировать катализатор, позволяющий проводить глубокую гидроочистку нефтяных фракций при значениях технологических параметров, соответствующих возможностям отечественных установок гидроочистки.

Техническим результатом настоящего изобретения являются катализатор с заданными свойствами оксидного предшественника сульфидной фазы и способ его приготовления, в котором осуществляется контакт на молекулярном уровне между основным активным компонентом (молибденом) и модификатором (Р и/или V) в строго заданных соотношениях. Способ синтеза позволяет ввести в состав алюмокобальтмолибденового катализатора гетерополикомплекс молибдена с фосфором, или ванадием, или фосфором и ванадием.

Технический результат достигается тем, что катализатор глубокой гидроочистки нефтяных фракций содержит оксид алюминия, оксид кобальта и фосфорномолибденовый гетерополикомплекс, или ванадиймолибденовый гетерополикомплекс, или фосфорванадиймолибденовый гетерополикомплекс при следующем содержании компонентов, мас.%:

фосфорномолибденовый гетерополикомплекс
[Р·(МоО3)12] 14,3-27,5
оксид кобальта СоО 3,2-8,5
оксид алюминия 64,0-82,5

или

фосфорнованадиймолибденовый гетерополикомплекс
[Р·(V2O5)0,5(MoO3)11] 14,8-28,4
оксид кобальта СоО 3,2-8,5
оксид алюминия 63,1-82,0

или

ванадиймолибденовый гетерополикомплекс
[V·(МоО3)12] 14,4-27,8
оксид кобальта СоО 3,2-8,5
оксид алюминия 63,7-82,4

а также способом приготовления катализатора, включающем пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп. Готовится совместный пропиточный раствор, содержащий гетерополисоединение молибдена, выбранное из (NH4)3[PMo12O40]·10H2O, (NH4)3[PVMo11O40]·8H2O или (NH4)3[VMo12O40]·10H2O и нитрат кобальта Со(NO3)2·6H2O при мольном отношении Мо/Со, равном 1,7-2,3, стабилизированный 25-35 мл 30%-ного H2O2 на 100 мл пропиточного раствора, при рН среды 1,5-5,0 и производится однократная пропитка оксида алюминия пропиточным раствором при температурах 20-90°С с последующей сушкой и прокаливанием при температурах не выше 400°С.

Исходные соединения для приготовления совместного пропиточного раствора, условия пропитки носителя совместным пропиточным раствором и прокаливания готовых катализаторов приведены в табл.1. Носитель представлял собой экструдат γ-Al2O3 в форме трилистника диаметром 1,2-1,3 мм и длиной 4-6 мм.

Катализаторы испытывали в виде частиц размером 0,25-0,5 мм, приготовленных путем измельчения и рассеивания исходных гранул прокаленного катализатора. Катализаторы сульфидировали при атмосферном давлении и температуре 400°С в смеси 20% об. H2S и H2 в течение 2 часов. Такие условия сульфидирования, по данным Н. Tops⌀e, позволяют получить на поверхности катализатора активную фазу «CoMoS» II типа. Испытания активности катализаторов проводили на лабораторной проточной установке под давлением водорода. Загрузка сульфидированного катализатора 20 см3. Реактор специально сконструирован таким образом, чтобы результаты тестирования катализаторов совпадали с промышленными данными, что подтверждено сравнением результатов опытного пробега в промышленности и тестирования на одном и том же промышленном катализаторе с использованием одного сырья. Сырье для проведения испытаний представляло собой смесь 90% об. прямогонной дизельной фракции и 10% об. легкого газойля каталитического крекинга и имело следующие характеристики: ρ420=0,8583; nD20=1,4806; содержание серы 1,19 мас.% (11900 млн-1); температура начала кипения 185°С; температура выкипания 96% об. 365°С. Условия испытания: парциальное давление водорода 4,0 МПа, кратность циркуляции водорода 600 нл/л сырья, объемная скорость подачи сырья 1,4 ч-1, температуры в реакторе 320, 340, 360 и 380°С. Гидрогенизаты отделяли от водорода в сепараторе при давлении, практически равном давлению в реакторе и температуре 20°С, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали в течение суток над прокаленным CaCl2. Содержание серы определяли с помощью рентгенофлюоресцентного анализатора. Брали среднее значение из трех параллельных измерений. Характеристика и результаты испытания катализаторов представлены в табл.2.

Пример 1

Для приготовления совместного пропиточного раствора солей активных компонентов 16,8 г (NH4)3[PMo12O40]·10H2O растворяют в 49,5 мл горячей дистиллированной воды и добавляют 16,5 мл 30%-ного раствора Н2О2. В полученный раствор добавляют 12,5 г нитрата кобальта Со(NO3)2·6Н2О и перемешивают. Подкисляют раствор одноосновной минеральной кислотой до рН 1,5. Раствором с температурой 20°С пропитывают 82,5 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушат при температуре 80, 100, 120°С в течение 2 часов при каждой температуре; затем температуру повышают со скоростью 1°С/мин до температуры 400°С, при которой выдерживают катализатор 2 ч в токе воздуха.

Состав готового катализатора, мас.%: 14,3 [Р·(МоО3)12]; 3,2 СоО; 82,5 Al2O3.

Пример 2

Для приготовления совместного пропиточного раствора солей активных компонентов 32,4 г (NH4)3[PMo12O40]·10Н2О растворяют в 33,3 мл горячей дистиллированной воды и добавляют 17,9 мл 30%-ного раствора Н2О2. В полученный раствор добавляют 33,1 г нитрата кобальта Со(NO3)2·6Н2О и перемешивают. Подкисляют раствор одноосновной минеральной кислотой до рН 3,0. Раствором с температурой 90°С пропитывают 64,0 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушат и прокаливают согласно примеру 1.

Состав готового катализатора, мас.%: 27,5 [Р·(МоО3)12]; 8,5 СоО; 64,0 Al2O3.

Пример 3

Для приготовления совместного пропиточного раствора солей активных компонентов 17,6 г (NH4)3[PVMo11O40]·8H2O растворили в 49,2 мл горячей дистиллированной воды и добавили 16,4 мл 30%-ного раствора Н2О2. В полученный раствор добавили 12,5 г нитрата кобальта Со(NO3)2·6Н2О и перемешали. Подкислили раствор одноосновной минеральной кислотой до рН 2,5. Раствором с температурой 20°С пропитали 82,0 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушили и прокаливали согласно примеру 1.

Состав готового катализатора, мас.%: 14,8 [Р·(V2O5)0,5(МоО3)11]; 3,2 СоО; 82,0 Al2O3.

Пример 4

Для приготовления совместного пропиточного раствора солей активных компонентов 34,0 г (NH4)3[PVMo11O40]·8H2O растворяют в 32,8 мл горячей дистиллированной воды и добавляют 17,7 мл 30%-ного раствора Н2О2. В полученный раствор добавляют 33,1 г нитрата кобальта Со(NO3)2·6Н2О и перемешивают. Подкисляют раствор одноосновной минеральной кислотой до рН 2,5. Раствором с температурой 90°С пропитывают 63,1 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушат и прокаливают согласно примеру 3.

Состав готового катализатора, мас.%: 28,4 [Р·(V2O5)0,5(МоО3)11]; 8,5 СоО; 63,1 Al2O3.

Пример 5

Для приготовления совместного пропиточного раствора солей активных компонентов 17,0 г (NH4)3[VMo12O40]·10Н2О растворяют в 49,4 мл горячей дистиллированной воды и добавляют 16,5 мл 30%-ного раствора H2O2. В полученный раствор добавляют 12,5 г нитрата кобальта Со(NO3)2·6Н2О и перемешивают. Подкисляют раствор одноосновной минеральной кислотой до рН 1,5. Раствором с температурой 20°С пропитывают 82,4 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушат и прокаливают согласно примеру 1.

Состав готового катализатора, мас.%: 14,4 [V·(МоО3)12]; 3,2 СоО; 82,4 Al2O3.

Пример 6

Для приготовления совместного пропиточного раствора солей активных компонентов 32,7 г (NH4)3[VMo12O40]·10H2O растворяют в 33,1 мл горячей дистиллированной воды и добавляют 17,8 мл 30%-ного раствора H2O2. В полученный раствор добавляют 33,1 г нитрата кобальта Со(NO3)2·6Н2О и перемешивают. Подкисляют раствор одноосновной минеральной кислотой до рН 1,5. Раствором с температурой 90°С пропитывают 63,7 г алюмооксидного носителя по влагоемкости. Полученный катализатор сушат и прокаливают согласно примеру 1.

Состав готового катализатора, мас.%: 27,8 [V·(МоО3)12]; 8,5 СоО; 63,7 Al2O3.

Пример 7 (по прототипу, пример 5)

Состав готового катализатора, мас.%: 12,0 МоО3; 4,5 СоО; [SiO2·12WO3] 2,55; 80,95 Al2O3.

Таблица 1
Соединения молибдена, используемые для приготовления катализаторов, условия пропитки носителя и прокаливания готового катализатора
N Гетерополисоединение молибдена Мольное отношение Мо:Со в составе пропиточного раствора Количество 30%-ного H2O2, мл, на 100 мл пропиточного раствора рН пропиточного раствора Температура пропитки носителя, °С
1 (NH4)3[PMo12O40]·10H2O 2,3 25 1,5 20
2 (NH4)3[PMo12O40]·10H2O 1,7 35 3,0 90
3 (NH4)3[PVMo11O40]·8H2O 2,3 25 2,5 20
4 (NH4)3[PVMo11O40]·8H2O 1,7 35 2,5 90
5 (NH4)3[VMo12O40]·10H2O 2,3 25 1,5 20
6 (NH4)3[VMO12O40]·10H2O 1,7 35 1,5 90
7 По прототипу

Таблица 2
Состав катализаторов и остаточное содержание серы в гидрогенизатах
N Гетерополикомплекс молибдена Содержание в катализаторе, мас.% Мольное отношение Мо:Со в составе катализатора Остаточное содержание серы в гидрогенизате при температуре испытания, млн-1
СоО гетерополикомплекса молибдена
320°С 340°С 360°С 380°С
1 [Р·(МоО3)12] 3,2 14,3 2,3 174 120 70 35
2 [Р·(МоО3)12] 8,5 27,5 1,7 165 115 63 26
3 [Р·(V2O5)0,5(MoO3)11] 3,2 14,8 2,3 162 106 51 25
4 [Р·(V2O5)0,5(МоО3)11] 8,5 28,4 1,7 123 84 40 17
5 [V·(МоО3)12] 3,2 14,4 2,3 169 100 64 30
6 [V·(МоО3)12] 8,5 27,8 1,7 173 91 47 22
7* [SiO2·12WO3] 2,55% СоО 4,5% МоО3 12,0% 512 380 273 262

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.05.2013
№216.012.41fe

Устройство для триботехнических испытаний материалов

Изобретение относится к области исследования триботехнических свойств конструкционных и смазочных материалов, а именно к приспособлениям для проведения испытаний на трение и износ, позволяющим использовать в качестве привода токарные или сверлильные станки. Устройство содержит привод вращения,...
Тип: Изобретение
Номер охранного документа: 0002482464
Дата охранного документа: 20.05.2013
20.07.2013
№216.012.568f

Способ утилизации твердых бытовых отходов и устройство для его осуществления

Группа изобретений относится к области рекультивации земель. Способ включает размещение твердых бытовых отходов в чаше полигона, отведение дренажных вод на испарительный пруд, последовательное нагнетание отходов и воздуха в нагнетательные скважины, расположенные в свалочном теле, формирование...
Тип: Изобретение
Номер охранного документа: 0002487767
Дата охранного документа: 20.07.2013
20.02.2019
№219.016.bf71

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций. Описан способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп,...
Тип: Изобретение
Номер охранного документа: 0002385764
Дата охранного документа: 10.04.2010
15.03.2019
№219.016.e0cc

Способ снижения содержания бензола в бензиновых фракциях

Изобретение относится к содержанию бензола в товарных бензинах. Заявлен способ снижения содержания бензола в бензиновых фракциях путем гидрирования и изомеризации в присутствии катализаторов при повышенных температуре и давлении сырья, состоящего из смеси фракции НК-85С стабильного риформата,...
Тип: Изобретение
Номер охранного документа: 0002322478
Дата охранного документа: 20.04.2008
24.05.2019
№219.017.5fbc

Способ образования покрытий на накопителях отходов

Способ относится к области охраны окружающей среды и предназначен для обезвреживания накопителей бытовых отходов. Способ включает отсыпку, послойное разравнивание, планировку поверхностного слоя накопителя отходов, внесение биодобавок на основе осадков сточных вод, избыточных активных илов...
Тип: Изобретение
Номер охранного документа: 0002318619
Дата охранного документа: 10.03.2008
Показаны записи 1-10 из 68.
27.06.2013
№216.012.4fc1

Способ приготовления катализаторов и катализатор для глубокой гидроочистки нефтяных фракций

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан способ приготовления катализатора, включающий пропитку...
Тип: Изобретение
Номер охранного документа: 0002486010
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.59ac

Способ получения 3-амино-1-адамантанола и его кислотно-аддитивных солей

Изобретение относится к новому способу получения 3-амино-1-адамантанола и его кислотно-аддитивных солей. Способ заключается в окислении адамантана дымящей азотной кислотой в мольном соотношении 1:7-15 соответственно в присутствии ледяной уксусной кислоты в мольном соотношении 1:0,5-2,5 в...
Тип: Изобретение
Номер охранного документа: 0002488577
Дата охранного документа: 27.07.2013
20.09.2013
№216.012.6a87

Состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья

Изобретение относится к катализаторам и их получению. Описан катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, содержащий соединения...
Тип: Изобретение
Номер охранного документа: 0002492922
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7ca8

Катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки масляных фракций и рафинатов селективной очистки, характеризующийся следующим соотношением компонентов, % мас.: оксид молибдена (MOo) 12,0-20,0, оксид вольфрама (WO) 1,0-6,0, оксид никеля или оксид кобальта (NiO или CoO)...
Тип: Изобретение
Номер охранного документа: 0002497585
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ca9

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области катализа. Описан катализатор гидроочистки нефтяных фракций, в котором в качестве носителя используется смесь оксида алюминия и борофосфата переменного состава, образующегося на стадии прокаливания носителя из HBO и HPO, при следующем содержании компонентов, %...
Тип: Изобретение
Номер охранного документа: 0002497586
Дата охранного документа: 10.11.2013
10.10.2014
№216.012.fa96

Способ энантиоселективного синтеза (s)-прегабалина

Изобретение относится к способу получения ()-прегабалина формулы , используемого в терапии ряда нейропатических заболеваний. Способ заключается в энантиоселективном присоединении диэтилмалоната к 4-метил-1-нитропентену-1 с последующим восстановлением и кислотным гидролизом продукта...
Тип: Изобретение
Номер охранного документа: 0002529996
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.07e7

Способ получения хиральных гетероциклических лигандов на основе 1,2-диаминоциклогексана

Изобретение относится к способу получения хиральных гетероциклических лигандов на основе 1,2-диаминоциклогексана, содержащих гетероциклические фрагменты: тиенил-2-, тиенил-3-, фурил-2-, 5-метилфурил-2-, (2,2'-битиофен)-5-ил-, 5-(4'-метилциклогекс-1'-ен-1'-ил)тиофен-2-, которые могут входить в...
Тип: Изобретение
Номер охранного документа: 0002533424
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.2754

Производные 2-r1-4-r2-6-полинитрометил-1,3,5-триазинов, обладающие антибактериальной активностью

Изобретение относится к применению 2-R-4-R-6-полинитрометил-1,3,5-триазинов общей формулы: где n=0, X=NO, Cl, Br, R=R=OR, OAr (R=CH, СН, СН(СН)СН, CHCHCl, Ar=мета-СНСН), R=OR, OAr, R=N(CH); n=1, X=Cl, R=OR, R=NH(CH)NH, N(CHCH)NCH в качестве соединений, обладающих антибактериальной активностью....
Тип: Изобретение
Номер охранного документа: 0002541525
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2768

Способ получения гидрохлоридов аминов адамантанового ряда

Изобретение относится к способу получения гидрохлоридов аминов адамантанового ряда, в том числе гидрохлоридов 1-аминоадамантана или 3,5-диметил-1-аминоадамантана, которые являются фармацевтической субстанцией препаратов «Мидантан» и «АкатинполМемантин». Способ заключается в окислении...
Тип: Изобретение
Номер охранного документа: 0002541545
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3bed

Способ гидрообработки рафинатов масляных фракций в присутствии системы катализаторов

Изобретение относится к способу гидрообработки рафинатов масляных фракций в присутствии системы катализаторов с последующей депарафинизацией растворителем продукта. Данная система катализаторов содержит оксиды никеля, кобальта, молибдена, вольфрама, алюминия. При этом гидрообработку масляных...
Тип: Изобретение
Номер охранного документа: 0002546829
Дата охранного документа: 10.04.2015
+ добавить свой РИД