×
27.12.2014
216.013.1549

Результат интеллектуальной деятельности: ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и фармацевтики и касается применения соединений, представляющих собой бензилиденфураноновые производные (+)-усниновой кислоты формулы 6-13 в качестве противоопухолевых агентов. Соединения проявляют цитотоксическую активность в отношении опухолевых клеток линий СЕМ-13, U-937, МТ-4. 2 ил., 3 табл., 8 пр.
Основные результаты: Применение бензилиденфураноновых производных (+)-усниновой кислоты формулы: в качестве противоопухолевых агентов.

Область техники, к которой относится изобретение

Изобретение относится к медицинской химии и касается производных усниновой кислоты, содержащих бензилиденфураноновый фрагмент. Указанные соединения могут быть использованы в качестве лекарственных средств, обладающих противоопухолевой активностью.

Уровень техники

Современные схемы лечения различного типа злокачественных опухолей используют хирургические методы в комплексе в высокодозной агрессивной терапией, серьезным недостатком которой является высокая токсичность современных противоопухолевых препаратов в отношении жизненноважных органов и систем организма. Сопутствующие побочные эффекты снижают эффективность, а в ряде случаев ограничивают применение противоопухолевых средств. Другой проблемой в лечении онкологических заболеваний является проблема остаточного опухолевого клона. Опухолевые клетки, пережившие химиотерапию, обычно проявляют лекарственную устойчивость к широкому кругу препаратов и вызывают рецидив заболевания в более тяжелой форме.

В связи с этим актуальным является поиск новых противоопухолевых препаратов, обеспечивающих высокую избирательность и эффективность лечения.

Важным направлением медицинской химии, позволяющим получать новые, эффективные противоопухолевые препараты, является использование синтетических трансформаций растительных метаболитов. Наиболее приемлемым считается исследование растительных метаболитов, о биологической активности которых имеются достоверные сведения и которые являются доступными в настоящее время или станут доступными в ближайшем будущем по мере формирования сырьевой базы. К данному классу соединений относится усниновая кислота, широкий спектр биологической активности которой (противовоспалительная, противовирусная, противоопухолевая и т.д.) приковывает к ней пристальный интерес исследователей.

Антипролиферативная активность природной усниновой кислоты (1) (Схема 1) описана в литературе, оба ее энантиомера проявляют умеренную цитотоксическую активность в отношении широкого ряда опухолевых клеточных культур.

Первые упоминания о цитотоксической активности усниновой кислоты относятся к 1975 г, в работе [S. Kupchan, H. Kopperman 1-Usnic Acid: Tumor Inhibitor Isolated from Lichens Experientia V.31, Fasc.6, 625] рассматривалась выживаемость мышей с перевитой карциномой Льюиса, выживаемость возрастала до 135-152% при обработке (-)-усниновой кислотой в дозах 20-200 мг/кг.

Данные о цитотоксичности (-)-усниновой кислоты и ряда ее производных на клетках карциномы легких (L1210) и лейкемии (P388) опубликованы в работе [М. Takai, Y. Uehara, J. Beisler Usnic acid derivatives as potential antineoplastic agents Journal of Medicinal chemistry, 1979, V.22, N.11, 1380-1384]. Высокую степень ингибирования (более 90%) в концентрации 140 µМ проявили сама (-)-усниновая кислота, а также ряд ее наиболее липофильных производных, модифицированных по кольцу A. Снижение цитотоксической активности наблюдалось при переходе к производным, модификация которых включала разрушение трикетонной системы кольца C.

(+)-Усниновая кислота (1) (Схема 1) также проявляет заметный цитотоксический эффект, что наблюдалось авторами работы [B. Burlando, E. Ranzato, A. Volante, G. Appendino, F. Pollastro, L. Verotta Antiproliferative Effects on Tumour Cells and Promotion of Keratinocyte Wound Healing by Different Lichen Compounds Planta Med 2009; 75: 607-613] в отношении ряда опухолевых клеток мезотелиомы ММ98, эпидермоидной карциномы А431 и кератиноцитов человека НаСаТ, ингибирующая концентрация (+)-усниновой кислоты IC50 составила от 23 до 76 µM, что было существенно ниже, чем у ряда других лишайниковых кислот.

Цитотоксическую активность (+)-усниновой кислоты против HeLa cells in vitro исследовали авторы статьи [M. Natić, Z. Tesbrevelić, K. Andbarelković, I. Brcbreveleski, S. Radulović, S. Manić, D. Sladić Synthesis and Biological Activity of Pd(II) and Cu(II) Complexes with Acylhydrazones of Usnic Acid Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry Vol.34, No.1, pp.101-113, 2004], IC50 достигало 14.9 µM, увеличение цитотоксической активности против данной линии клеток (карцинома шейки матки) наблюдалось при использовании ее производных, а особенно тиосемикарбазона усниновой кислоты и его комплекса с медью (2) (Схема 1), IC50 этих соединений составило 2.4 и 1.8 µM соответственно.

Широкий спектр опухолевых клеточных культур исследовался в работах [М. Bazin, A. Le Lamer, J. Delcros, I. Rouaud, P. Uriac, J. Boustie, J. Corbel, S. Tomasi Synthesis and cytotoxic activities of usnic acid derivatives Bioorganic and Medicinal Chemistry, 2008, V.16, 6860-6866 и С. Bezivin, S. Tomasi, I. Rouaud, J. Delcros, J. Boustie Cytotoxic activity of compounds from Lichen: Cladonia convolute Planta Med 2004; 70: 874-877], посвященных (+)- и (-)-усниновым кислотам и полиаминопроизводным (+)-усниновой кислоты. Причем оба энантиомера усниновой кислоты проявили умеренную цитотоксическую активность в отношении клеточных линий L1210 (лейкемия), CHO (рак яичников), 3LL (карцинома легких), DU145 (рак простаты), MCF7 (аденокарцинома груди), K-562 (лейкемия), U251 (глиобластома) с концентрацией IC50 от 17 до 105 µM. Существенную цитотоксическую активность, большую, чем нативная усниновая кислота, проявило соединение (3) (Схема 1), полученное по реакции усниновой кислоты и диаминооктана, IC50 соединения 3 в отношении клеток L1210 составил 2.7 µM.

(+)- И (-)-усниновые кислоты исследовались [Einarsdottir E, Groeneweg J, Bjornsdottir GG, Harethardottir G, Omarsdottir S, Ingolfsdottir K, Ogmundsdottir HM (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76(10): 969-974] на цитотоксическую активность в отношении клеток рака груди T-47D и рака печени Capan-2. Оба энантиомера проявили сходное антипролиферативное действие против обеих клеточных линий. IC50 составила 4.2 мкг/мл и 4.0 мкг/мл для (+) и (-)-усниновых кислот в отношении T-47D, 5.3 мкг/мл и 5.0 мкг/мл против Capan-2 соответственно. При этом авторы не наблюдали проявлений классического апоптоза клеток с фрагментацией ДНК, однако, наблюдаемая потеря митохондриального мембранного потенциала указывает на то, что эти соединения используют механизм митохондриального апоптоза в соответствующем сигнальном пути гибели клетки.

Усниновая кислота, авторы не уточняют какой из энантиомеров, проявляет цитотоксическую активность в отношении клеток рака груди (wild-type p53 MCF7 и non- functional p53 MDA-MB-231) и рака легких (H1299) в концетрации 29 µМ [Mayer М, O′Neill MA, Murray KE, Santos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, Appleyard VC (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16(8):805-809].

Недостатками природных усниновых кислот являются относительно низкая эффективность по сравнению с существующими препаратами и плохая биодоступность. Хорошие результаты получены на некоторых полусинтетических производных, модифицированных по различным функциональным группам усниновой кислоты, что может свидетельствовать о перспективности синтетических модификаций растительных метаболитов.

Раскрытие изобретения

Задачей изобретения является создание новых эффективных, низкотоксичных лекарственных средств, обладающих противоопухолевым действием и получаемых из доступного растительного сырья.

Поставленная задача решается применением соединений, которые являются полусинтетическими производными (S)-усниновой кислоты, содержащими бензилиденфураноновый фрагмент, проявляющими цитотоксическую активность в отношении опухолевых клеток линий СЕМ-13, U-937, МТ-4.

Для достижения поставленной цели мы провели ряд химических модификаций, представленных на схеме 2, синтез целевых соединений описан в статье [Соколов Д.Н., Лузина О.А., Шернюков А.В., Салахутдинов Н.Ф. Синтез ауронов на основе усниновой кислоты. Химия природных соединений. 2012. №3. С. 350-355]. В качестве исходного соединения была взята (S)-усниновая кислота, полученная экстракцией лишайника Cladonia stellaris по методике [Н.Ф. Салахутдинов, М.П. Половинка, М.Ю. Панченко, Пат. РФ №2317076С1; Бюл. Изобр. 2008, №5]. Бромирование усниновой кислоты бромом в присутствии бромоводорода дает производное 4, обработка которого ацетатом калия приводит к внутримолекулярной циклизации с образованием соединения с фураноновым фрагментом 5. Следующим этапом было получение целевых соединений с противоопухолевой активностью реакцией соединения 5 с рядом ароматических альдегидов.

Было исследовано влияние усниновой кислоты (1) и бензилиденфураноновых производных (6-13) на жизнеспособность клеток карциномных линий человека. Значения CCID усниновой кислоты (1) и ее производных (6-13) для различных карциномных линий клеток человека приведены в таблице 1. В качестве препаратов сравнения использовали (+)-усниновую кислоту (1). В результате было показано, что (+)усниновая кислота (1) проявляет умеренную, а заявляемые соединения (6-13) - высокую противоопухолевую активность по отношению ко всем использованным опухолевым клеточным культурам, а именно CEM-13, U-937, MT-4. Показано, что значения CCID50 для соединений (6-13) имеют сходный порядок величины для всех опухолевых клеток и лежат в диапазоне 0.6-9.0 мкг/мл. Для наиболее активных соединений (6, 9, 10) дополнительно была исследована их способность индуцировать апоптоз в опухолевых клетках. Установлено, что эти соединения способны индуцировать апоптоз в опухолевых клетках моноцитарного происхождения U-937 от 28 до 69% и в опухолевых клетках лимфоидного происхождения MT-4 от 6 до 19%. Полученные данные по противоопухолевой активности соединений (6-13) позволяют рассматривать их как перспективные лекарственные агенты. Изобретение иллюстрируется следующими примерами.

Пример 1.

Взаимодействие (+)-усниновой кислоты с двукратным избытком брома

К 1 ммоль усниновой кислоты (344 мг) добавляли комплекс бромдиоксана (2 ммоль брома (0.10 мл) растворяли в 14 мл диоксана), несколько капель HBr и оставили на 7 суток при комнатной температуре. После концентрирования реакционной смеси на ротационном испарителе хроматографировали полученный остаток на силикагеле (60-200µ), элюент - CH2Cl2.

(S)-2-ацетил-6-(2-бромацетил)-3,7,9-тригидрокси-8,9b-диметилдибензо[b,d]фуран-1(9bH)-он 4. Выход 283 мг (67%). Т.пл. 97-100°C. [α]D+349 (c 0.5; CHCl3). ЯМР 1H (CDCl3, δ, м.д., J Гц): 1.75 (3H, c, H-15), 2.08 (3H, c, H-10), 2.64 (3H, c, H-12), 4.52 (2H, дд, J=12.4, J=14.0, H-14), 6.00(1H, c, H-4), 11.17 (1H, c, OH-9), 12.68 (1H, c, OH-7), 18.81 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.5 (C-10), 27.7 (C-12), 31.9 (C-15), 34.5 (C-14), 61.6 (C-9b), 98.7 (C-4), 99.0 (C-6), 104.3 (C-9a), 105.1 (C-2), 109.6 (C-8), 154.3 (C-5a), 158.4 (C-9), 164.1 (C-7), 178.5 (C-4aa), 191.5 (C-3), 192.7 (C-13), 197.7 (C-1), 201.7 (C-11). ИК спектр (ν, см-1): 842, 1140, 1292, 1458, 1628, 3013, 3497. Найдено: m/z 421.9976 [M]+ C18H15O7Br. Вычислено: M=421.9996.

Пример 2

Взаимодействие соединения 4 с ацетатом калия

К раствору 1 ммоль соединения 4 (423 мг) в 25 мл ацетона добавили 150 мг (1.5 ммоль) ацетата калия и кипятили реакционную смесь в течение 2 часов. Затем разбавили водой (до -50-60 мл), подкислили HCl (1:4) до pH=3-4. Экстрагировали CH2Cl2 (3×10 мл), сушили над прокаленным MgSO4, удаляли растворитель и хроматографировали остаток на колонке с силикагелем, элюент - CH2Cl2.

(10S)-8,13-дигидрокси-7,10-диметил-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12-пентаен-3,11-дион 5. Выход 308 мг (90%). Т.пл. 202-203°С.[α]D+397 (c 0.5; CHCl3). ЯМР 1H (CDCl3, δ, м.д., J Гц): 1.73 (3H, с, H-15), 2.13 (3H, c, H-10), 2.64 (3H, c, H-12), 4.66 (2H, c, H-14), 6.02 (1H, c, H-4), 11.27 (1H, c, OH-9), 18.82 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 6.91 (C-10), 27.80 (C-12), 31.91 (C-15), 58.71 (C-9b), 75.70 (C-14), 99.01 (C-4), 100.61 (C-9a), 105.10 (C-6), 105.7 (C-2), 107.10 (C-8), 149.13 (C-5a), 159.80 (C-9), 173.81 (C-7), 179.61 (C-4a), 191.61 (C-3), 194.10 (C-13), 197.90 (C-1), 201.71 (C-11). Найдено: m/z 342.0736 [M]+ C18H14O7. Вычислено: M=342.0734.

Пример 3

Взаимодействие соединения 5 с альдегидами (общая методика)

К раствору 1 ммоль соединения 5 (342 мг) в 24 мл MeOH добавили 1.1 ммоль соответствующего альдегида, 1 мл 50% водного раствора KOH и нагревали (в случае получения соединений 6-12) или перемешивали при комнатной температуре в течение 1.5 часов (в случае получения соединения 13). Затем реакционную смесь разбавили водой (до -50-60 мл), подкислили HCl (1:4) до pH=3-4. Экстрагировали CH2Cl2 (3×10 мл), сушили над прокаленным MgSO4, удаляли растворитель и хроматографировали остаток на колонке с силикагелем, элюент - CH2Cl2.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(фенилметилиден)-5,16-диоксатетрациклор[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 6. Выход 262 мг (61%). Т.пл. 203°C. [α]D+267 (c 0.45; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.78 (3H, c, H-15), 2.32 (3H, c, H-10), 2.67 (3H, c, H-12), 6.07 (1H, c, H-4), 6.81 (1H, c, H-16), 7.39 (1H, м, H-20), 7.46 (2H, м, H-19, H-21), 7.87 (2H, м, H-18, H-22), 11.42 (1H, c, OH-9), 18.86 (1H, с, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.50 (C-10), 27.86 (C-12), 31.96 (C-15), 58.70 (C-9b), 99.13 (C-4), 100.85 (C-6), 105.12 (C-2), 105.77 (C-8), 108.23 (C-9a), 112.12 (C-16), 128.81 (C-18, C-22), 129.69 (C-20), 131.23 (C-19, C-21), 132.13 (C-17), 147.44 (C-14), 149.81 (C-5a), 159.36 (C-9), 165.72 (C-7), 179.57 (C-13, C-4a), 191.62 (C-3), 197.86 (C-1), 201.79 (C-11). Найдено:m/z 430.1039 [M]+ C25H18O7. Вычислено: M=430.1047.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(n-бромфенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 7. Выход 270 мг (53%). Т.пл. 218-219°C.[α]D+406 (c 0.3; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.76 (3H, c, H-15), 2.28 (3H, c, H-10), 2.65 (3H, c, H-12), 6.06 (1H, , H-4), 6.72 (1H, c, H-16), 7.56 (2H, м, H-19, H-21), 7.70 (2H, м, H-18, H-22), 11.44 (1H, c, OH-9), 18.84 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.19 (C-10), 27.53 (C-12), 31.63 (C-15), 58.35 (C-9b), 98.88 (C-4), 100.41 (C-6), 104.81 (C-2), 105.49 (C-8), 108.05 (C-9a), 110.23 (C-16), 123.72 (C-20), 130.76 (C-17), 131.75 (C-19, C-21), 132.10 (C-18, C-22), 147.36 (C-14), 149.54 (C-5a), 159.18 (C-9), 165.28 (C-7), 178.97 (C-4a), 179.14 (C-13), 191.30 (C-3), 197.51 (C-1), 201.48 (C-11). Найдено: m/z 508.0161 [M]+ C25H17O7Br. Вычислено: M=508.0152.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(o-метоксифенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 8. Выход 340 мг (74%). Т.пл. 206-208 °C. [α]D+362 (c 0.4; CHCl3). ЯМР 1H (CDCl3, 8, м.д., J/Гц): 1.76 (3H, c, H-15), 2.29 (3H, c, H-10), 2.65 (3H, c, H-14), 3.89 (3H, c, H-23), 6.06 (1H, c, H-4), 6.91 (1H, дд, J19, 20=8.3, J19, 21=0.7, H-19), 7.05 (1H, ддд, J21, 22=7.8, J21, 20=7.4, J21, 19=0.7, H-21), 7.35 (1H, ддд, J20, 19=8.3, J20, 21=7.4, J20, 22=1.7, H-20), 7.39 (1H, c, H-16), 8.23 (1H, дд, J22, 21=7.8, J22, 20=1.7, H-22), 11.37 (1H, c, OH-9), 18.86 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.54 (C-10), 27.94 (C-12), 31.99 (C-15), 55.46 (C-23), 58.77 (C-9b), 99.08 (C-4), 101.14 (C-6), 105.11 (C-2), 105.69 (C-8), 106.26 (C-16), 108.02 (C-9a), 110.63 (C-19), 120.75 (C-21), 121.15 (C-17), 131.29 (C-20), 131.56 (C-22), 147.49 (C-14), 149.74 (C-5a), 158.65 (C-18), 159.06 (C-9), 165.62 (C-7), 179.60 (C-13), 179.76 (C-4a), 191.65 (C-3), 197.91 (C-1), 201.82 (C-11). Найдено: m/z 460.1154 [М]+ C26H20O8. Вычислено: M=460.1153.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(n-фторфенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 9. Выход 273 мг (61%). Т.пл. 198°C.[α]D+281 (c 0.4; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.75 (3H, с, H-15), 2.26 (3H, c, H-10), 2.66 (3H, c, H-12), 6.04 (1H, c, H-4), 6.69 (1H, c, H-16), 7.10 (2H, м, H-19, H-21), 7.81 (2H, м, H-18, H-22), 11.39 (1H, c, OH-9), 18.84 (1H, с, OH-3). ЯМР 13C (CDCl3, 5, м.д., J/Гц): 7.48 (C-10), 27.82 (C-12), 31.95 (C-15), 58.67 (C-9b), 99.10 (C-4), 100.76 (C-6), 105.10 (С-2), 105.69 (С-8), 108.27 (С-9а), 110.67 (C-16), 116.00 (д, JC-F=22 Гц, C-19, C-21), 128.43 (д, JC-F=3.18 Гц, C-17), 133.10 (д, JC-F=8.41 Гц, C-18, C-22), 147.01 (д, JC-F=2.64 Гц, C-14), 149.76 (C-5a), 159.29 (C-9), 163.00 (д, JC-F=252.39 Гц, C-20), 165.55 (C-7), 179.22 (C-4a), 179.48 (C-13), 191.60 (C-3), 197.82 (C-1), 201.77 (C-11). Найдено: m/z 448.0957 [М]+ C25H17O7F1. Вычислено: M=448.0953.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(n-хлорфенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 10. Выход 255 мг (55%). Т.пл. 217°C. [α]D+262 (c 0.3; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.75 (H, c, H-15), 2.26 (3H, c, H-10), 2.66 (3H, c, H-12), 6.04 (1H, c, H-4), 6.67 (1H, c, H-16), 7.36 (2H, м, H-19, H-21), 7.74 (2H, м, H-18, H-22), 11.41 (1H, c, OH-9), 18.84 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.49 (C-10), 27.84 (C-12), 31.96 (C-15), 58.66 (C-9b), 99.14 (C-4), 100.68 (C-6), 105.12 (C-2), 105.75 (C-8), 108.35 (C-9a), 110.42 (C-16), 129.06 (C-19, C-21), 130.64 (C-17), 132.21 (C-18, C-22), 135.54 (C-14), 147.52 (C-20), 149.80 (C-5a), 159.41 (C-9), 165.53 (C-7), 179.15 (C-4a), 179.43 (C-13), 191.59 (C-3), 197.81 (C-1), 201.77 (C-11). Найдено: m/z 464.0660 [М]+ C25H17O7C11. Вычислено: M=464.0657.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(n-метоксифенилметилиден)-5,16-диоксатетрацикло[7.7,0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 11. Выход 300 мг (65%). Т.пл. 258-260°C. [α]D+300 (c 0.45; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.75 (3H, c, H-15), 2.29 (3H, c, H-10), 2.65 (3H, c, H-12), 3.84 (3H, c, H-23), 6.04 (1H, c, H-4), 6.78 (1H, c, H-16), 6.95 (2H, м, H-19, H-21), 7.81 (2H, м, H-18, H-22), 11.34 (1H, c, OH-9), 18.83 (1H, c, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.54 (C-10), 27.88 (C-12), 32.00 (C-15), 55.28 (C-23), 58.80 (C-9b), 99.06 (C-4), 102.93 (C-6), 105.14 (C-2), 105.65 (C-8), 108.06 (C-9a), 112.38 (C-16), 114.43 (C-19, C-21), 124.92 (C-17), 133.10 (C-18, C-22), 146.42 (C-14), 149.81 (C-5a), 158.99 (C-9), 160.85 (C-20), 165.56 (C-7), 179.42 (C-4a), 179.77 (C-13), 191.65 (C-3), 197.94 (C-1), 201.79 (C-11). Найдено: m/z 460.1148 [M]+ C26H20O8. Вычислено: M=460.1153.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(3,4,5-триметоксифенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 12. Выход 385 мг (72%). Т.пл. 174-176°C. [α]D+224 (c 0.4; CHCl3). ЯМР 1H (CDCl3, δ, м.д.): 1.72 (3H, c, H-15), 2.23 (3H, c, H-10), 2.63 (3H, c, H-12), 3.87 (3H, c, H-24), 3.89 (6H, c, H-23, H-25), 6.02 (1H, c, H-4), 6.65 (1H, c, H-16), 7.09 (2H, c, H-18, H-22), 11.39 (1H, c, OH-9), 18.82 (1H, с, OH-3). ЯМР 13C (CDCl3, δ, м.д.): 7.28 (C-10), 27.80 (C-12), 31.98 (C-15), 55.80 (C-24, c-25), 58.67 (C-9b), 60.83 (C-23), 99.11 (C-4), 100.87 (C-6), 105.09 (C-2), 105.32 (C-8), 108.24 (C-9a), 108.30 (C-18, C-22), 112.23 (C-16), 127.43 (C-17), 139.56 (C-20), 146.95 (C-14), 149.79 (C-5a), 153.04 (C-19, C-21), 159.15 (C-9), 165.41 (C-7), 179.11 (C-4a), 179.47 (C-13), 191.61 (C-3), 197.80 (C-1), 201.79 (C-11). Найдено: m/z 520.1374 [M]+ C28H24O10. Вычислено: M=520.1364.

(10S,4Z)-8,13-дигидрокси-7,10-диметил-4-(м-нитрофенилметилиден)-5,16-диоксатетрацикло[7.7.0.02.6.010.15]гексадека-1,6,8,12,14-пентаен-3,11-дион 13. Выход 167 мг (35%). Т.пл. 230°C с разл. [α]D+364 (c 0.2; CH2Cl2). ЯМР 1H (CD2Cl2 δ, м.д.): 1.80 (3H, c, H-15), 2.34 (3H, c, H-10), 2.66 (3H, c, H-12), 6.09 (1H, c, H-4), 6.77 (1H, c, H-16), 7.64, 8.12, 8.21 (3H, 3м, H-20, H-21, H-22), 8.83 (4H, c, H-18), 11.53 (1H, c, OH-9), 18.88 (1H, c, OH-3). ЯМР 13C (CD2Cl2, δ, м.д.): 6.34 (C-10), 27.26 (C-12). 31.34 (C-15), 58.39 (C-9b), 98.81 (C-4), 100.05 (C-6), 104.89 (C-2), 105.63 (C-8), 107.73 (C-16), 108.49 (C-9a), 123.21, 124.81, 129.43, 136.06 (C-18, C-19, C-20, C-21), 133.60 (C-17), 148.17 (C-14), 148.46 (C-5a), 159.57 (C-9), 165.33 (C-7), 178.45 (C-4a), 179.09 (C-13), 191.38 (C-3), 197.70 (C-1), 201.62 (C-11). Найдено: m/z 475.0895 [M]+ C25H17O9N1. Вычислено: M=475.0898.

Пример 4.

Влияние усниновой кислоты (1), ее фуранонового производного (5) и соединений (6-13) на жизнеспособность опухолевых клеток Т-клеточного лейкоза человека МТ-4.

Клетки линии МТ-4 (клетки Т-клеточного лейкоза человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного Co2 при 37°C. Жизнеспособность клеток после инкубации с соединениями (1, 6-13) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 500 тыс. клеток/мл). Затем к клеткам добавляли раствор соединений (1,5-13) в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. Клетки инкубировали в присутствии соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где А570 - поглощение формазана, а A570 - фон клеток. Данные представляли в виде количества живых клеток относительно контроля. За 100% принимали количество клеток в контроле, где клетки инкубировали в отсутствии соединения, но в присутствии растворителя ДМСО.

Значения CD50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CD80 и CD90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно) приведены в таблице 1.

Из данных, приведенных в таблице 1, видно, что соединения (6-13) обладают более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток МТ-4 по сравнению с (+)-усниновой кислоты (1).

Пример 5.

Влияние усниновой кислоты (1) и соединений (6-13) на жизнеспособность опухолевых клеток Т-клеточного лейкоза человека СЕМ-13.

Клетки линии СЕМ-13 (линия клеток Т-клеточного лейкоза человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного CO2 при 37°C.

Жизнеспособность клеток после инкубации с соединениями (1, 6-13) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 500 тыс. клеток/мл). Затем к клеткам добавляли раствор соединений (1, 5-13) в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. В качестве препарата сравнения использовали (+)-усниновую кислоту (1). Клетки инкубировали в присутствии исследуемых соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где A570 - поглощение формазана, а A630 - фон клеток. Подсчет значений CD проводили, как описано в примере 4. Значения CD50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CD80 и CD90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно) приведены в таблице 1. Все исследованные соединения (6-13) обладают более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток СЕМ-13 по сравнению с (+)-усниновой кислотой (1).

Пример 6.

Влияние усниновой кислоты (1) и соединений (6-13) на жизнеспособность опухолевых клеток человека U-937

Клетки линии U-937 (опухолевая линия моноцитов человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного CO2 при 37°C. Жизнеспособность клеток после инкубации с соединениями (1, 6-13) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 400 тыс. клеток/мл). Затем к клеткам добавляли раствор исследуемых соединений в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. В качестве препарата сравнения использовали (+)-усниновую кислоту (1). Клетки инкубировали в присутствии соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где A570 - поглощение формазана, а A630 - фон клеток. Подсчет значений CD проводили, как описано в примере 4.

Из данных, приведенных в таблице 1, видно, что соединения (6-13) обладают более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток U-937 по сравнению с (+)-усниновой кислотой (1), за исключением соединения (7), противоопухолевый эффект которого на клетках U-937 менее выражен по сравнению с (+)-усниновой кислотой (1).

Пример 7.

Влияние соединений 6, 9, 10 на индукцию апоптоза в опухолевых клетках человека МТ-4

Для соединений 6, 9, 10 с наиболее высокой цитотоксичностью была определена их способность индуцировать апоптоз в опухолевых клетках.

В результате активации апоптоза происходит фрагментация ДНК за счет активации эндонуклеаз. Для определения фрагментированной ДНК клетки окрашивают красителем пропидиум иодид и затем определяют процент фрагметированной ДНК, с использованием проточного цитофлюориметра. Фиксируют клетки в суспензии в 70% этаноле путем добавления 1 мл клеток, суспендированных в фосфатно-солевом буфере (ФСБ) (1-5×106 клеток), к 9 мл 70% этанола в пробирке на льду. Далее клетки центрифугируют при 200 g, в течение 3 мин, этанол удаляют, клетки суспендируют в 10 мл PBS и центрифугируют при 300 g, в течение 5 мин. Затем клетки суспендируют в 0,5 мл PBS и инкубируют при комнатной температуре в течение 5 мин. После центрифугирования при 300 g в течение 5 мин осадок клеток суспендируют в 1 мл в растворе для окрашивания ДНК. Раствор для окрашивания ДНК готовят следующим образом: растворяют 200 мкг пропидиум иодида в 10 мл ФСБ, а затем добавляют 10 мкл Triton X-100 и 2 мг РНКазы. Полученный раствор инкубируют 15 мин при 70°C. Для окрашивания клетки инкубируют в течение 30 мин при комнатной температуре.

Анализ клеток проводят методом проточной цитометрии на проточном цитофлюориметре Canto FACS. Для возбуждения флюоресценции используют лазер (длина волны 488-нм), измеряют флуоресценцию при длине 600 нм и светорассеяние. Производят подсчет 10000 клеток. Количество клеток, в которых наблюдается апоптоз, соответствует области SubGl. Полученные результаты приведены на рис.1 и таблице 2.

Из этих данных видно, что обработка клеток линии МТ-4 приводит к индукции апоптоза через 24 часа в 6-12% клеток, а через 72 часа - в 13-19% клеток. Наибольшую активность в отношении индукции апоптоза в клетках МТ-4 проявили соединения 9, 10. В таблице приведены данные двух независимых экспериментов, в каждом было просчитано 10 тысяч клеток.

Пример 8.

Влияние соединений 6,9,10 на индукцию апоптоза в опухолевых клетках человека U-937

Для соединений 6, 9, 10 с наиболее высокой цитотоксичностью была определена их способность индуцировать апоптоз в опухолевых клетках.

В результате активации апоптоза происходит фрагментация ДНК за счет активации эндонуклеаз. Для определения фрагментированной ДНК клетки окрашивают красителем пропидиум иодид и затем определяют процент фрагметированной ДНК, с использованием проточного цитофлюориметра. Фиксируют клетки в суспензии в 70% этаноле путем добавления 1 мл клеток, суспендированных в фосфатно-солевом буфере (ФСБ) (1-5×106 клеток), к 9 мл 70% этанола в пробирке на льду. Далее клетки центрифугируют при 200 g, в течение 3 мин, этанол удаляют, клетки суспендируют в 10 мл PBS и центрифугируют при 300 g, в течение 5 мин. Затем клетки суспендируют в 0,5 мл PBS и инкубируют при комнатной температуре в течение 5 мин. После центрифугирования при 300 g в течение 5 мин осадок клеток суспендируют в 1 мл в растворе для окрашивания ДНК. Раствор для окрашивания ДНК готовят следующим образом: растворяют 200 мкг пропидиум иодида в 10 мл ФСБ, а затем добавляют 10 мкл Triton X-100 и 2 мг РНКазы. Полученный раствор инкубируют 15 мин при 70°C. Для окрашивания клетки инкубируют в течение 30 мин при комнатной температуре.

Анализ клеток проводят методом проточной цитометрии на проточном цитофлюориметре Canto FACS. Для возбуждения флюоресценции используют лазер (длина волны 488-нм), измеряют флуоресценцию при длине 600 нм и светорассеяние. Производят подсчет 10000 клеток. Количество клеток, в которых наблюдается апоптоз, соответствует области SubG1. Полученные результаты приведены на рис.2 и таблице 3. Из этих данных видно, что обработка клеток линии U-937 приводит к индукции апоптоза через 24 часа в 28-63% клеток, а через 48 часов - в 28-69% клеток. Наибольшую активность показала соединение 6. В таблице приведены данные двух независимых экспериментов, в каждом было просчитано 10 тысяч клеток.

Таким образом, соединения (6-13) обладают более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток МТ-4, СЕМ-13 и U-937 по сравнению с (+)-усниновой кислотой (1).

Таблица 1

Таблица 1
(+)-усниновая кислота и ее бензилиденфураноновые производные как противоопухолевые средства
CD50, мкг/мл
(+)-усниновая кислота и ее производные СЕМ-13 U-937 МТ-4
(1) 9±2.87 6.7±3.3 9.1±4.62
(6) 1.5±0.12 6.7±3.06 4±1.16
(7) 1.3±0.1 25±9.28 2.5±0.55
(8) 5.7±2.67 5.6±1.52 5.7±1.52
(9) 0.64±0.12 3.0±0.28 2.8±0.35
(10) 1.4±0.45 2.2±0.28 1.8±0.32
(11) 1.2±0.26 3.6±1.1 3.3±0.76
(12) 3.0±1.05 3.2±1.03 7.6±1.08
(13) 0.71±5.85 2.2±0.42 7.6±6.61
CD80, мкг/мл
(1) >100 54 50
(6) 8 78 >100
(7) 12 100 >100
(8) >100 >100 >100
(9) >100 15 >100
(10) >100 9.5 25
(11) 12 47 >100
(12) >100 >100 >100
(13) >100 12 100
CD90, мкг/мл
(1) >100 >100 92
(6) >100 >100 >100
(7) >100 >100 >100
(8) >100 >100 >100
(9) >100 >100 >100
(10) >100 >100 >100
(11) >100 >100 >100
(12) >100 >100 >100
(13) >100 >100 >100
Таблица 2
Индукция апоптоза соединениями 6, 9, 10 в опухолевой линии клеток человека МТ-4
Соединение (концентрация, мкг/мл) Время, ч % апоптоза (МТ-4)
эксперимент 1 эксперимент 2
Контроль 24 5,1 2,3
48 3,4 3,5
72 5 4,8
6 (4,0) 24 12 6,9
48 6,1 7,8
72 13,9 15,5
10 (1,8) 24 7,5 5,2
48 6,5 5,9
72 18,9 19,1
9 (2,8) 24 7,1 4,4
48 6,9 6,1
72 19,2 17,8

Таблица 3
Индукция апоптоза соединениями 6, 9, 10 в опухолевой линии клеток человека U-937
Соединение (концентрация, мкг/мл) Время, ч % апоптоза (U-937)
Эксперимент 1 эксперимент 2
Контроль 24 3,1 3,9
48 2 1,6
6 (6,7) 24 63,2 62,1
48 68,9 69,8
10 (2,2) 24 28,3 28,4
48 26,5 22,2
9 (3,0) 24 38,4 36,8
48 28,1 29

Применение бензилиденфураноновых производных (+)-усниновой кислоты формулы: в качестве противоопухолевых агентов.
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 135.
29.05.2018
№218.016.5500

N,n'-(алкандиил)бис[лабда-7(9),13,14-триен-4-карбоксамиды], обладающие противоопухолевой активностью

Изобретение относится к N,N’-(Алкандиил)бис[лабда-7(9),13,14-триен-4-карбоксамидам] формулы (Iа,б), где n=2 (Iа); n=6 (Iб), обладающим противоопухолевой активностью. Технический результат: получены новые соединения, обладающие способностью к подавлению роста опухолевых клеток человека. 2 ил.,...
Тип: Изобретение
Номер охранного документа: 0002654201
Дата охранного документа: 17.05.2018
19.08.2018
№218.016.7e03

6,13,13-триметил-6,8,9,12-тетрагидро-6,9-метаноазепино[2,1-b]хиназолин-10(7н)-он в качестве ингибитора вирусов гриппа а

Изобретение относится к области органической химии, а именно к новому соединению 6,13,13-триметил-6,8,9,12-тетрагидро-6,9-метаноазепина[2,1-b]хинозалин-10(7Н)-ону формулы I. Технический результат: получено новое гетероциклическое соединение, обладающее полезной биологической активностью,...
Тип: Изобретение
Номер охранного документа: 0002664331
Дата охранного документа: 16.08.2018
25.08.2018
№218.016.7f69

Замещенные октагидрохромены в качестве средства против вируса гриппа

Изобретение относится к области медицины и фармацевтики и касается применения замещенных октагидрохроменов общей формулы 1, включая их пространственные изомеры: где R и R могут быть метильной или этильной группой и являются одинаковыми или R и R совместно образуют циклопентановый или...
Тип: Изобретение
Номер охранного документа: 0002664728
Дата охранного документа: 22.08.2018
07.09.2018
№218.016.840d

Гемостатическое антибактериальное средство, способ его получения, медицинское изделие на основе гемостатического антибактериального средства

Изобретение относится к медицине, а именно к гемостатическому антибактериальному средству, его применению, способу получения, к медицинскому изделию на основе антибактериального средства и его применению, причем гемостатическое антибактериальное средство представляет собой супрамолекулярный...
Тип: Изобретение
Номер охранного документа: 0002665950
Дата охранного документа: 05.09.2018
16.11.2018
№218.016.9e09

Замещенные аминобензопентатиепины в качестве антимикробных средств

Изобретение относится к области медицины, а именно к терапии, и предназначено для лечения бактериальных и грибковых инфекций. В качестве антибактериальных и фунгицидных средств применяют замещенные аминобензопентатиепины общей формулы 1 где R=СН (Ia), R=CF (Ib). Использование изобретения...
Тип: Изобретение
Номер охранного документа: 0002672472
Дата охранного документа: 15.11.2018
30.12.2018
№218.016.add0

Компонент катализатора для полимеризации этилена в сверхвысокомолекулярный полиэтилен, катализатор и способ его приготовления

Изобретение относится к компоненту катализатора полимеризации этилена, а именно - бис{2-[(3-диаллиламинофенилимино)метил]-4-R-6-R-фенокси}титан(IV) дихлориду, имеющему структуру, представленную формулой 1, или бис{2-[(4-диаллиламинофенилимино)метил]-4-R-6-R-фенокси}титан(IV) дихлориду, имеющему...
Тип: Изобретение
Номер охранного документа: 0002676484
Дата охранного документа: 29.12.2018
11.03.2019
№219.016.d619

Компонент катализатора для полимеризации этилена в высокомолекулярный эластомер, катализатор и способ его приготовления

Изобретение относится к компоненту катализатора для полимеризации этилена, к катализатору и способу получения катализатора. Компонент катализатора имеет структуру, представленную общей формулой 1, где заместители R, R и R независимо друг от друга выбирают из группы, включающей атом водорода и...
Тип: Изобретение
Номер охранного документа: 0002681535
Дата охранного документа: 07.03.2019
08.04.2019
№219.016.fe9b

Способ получения n-[3-оксо-20(29)лупен-28-оил]-ω-аминокислот

Изобретение относится к способу получения N-бетулоноил-ω-аминокислот формулы 1, в котором целевой продукт получают взаимодействием гидрохлорида сложного эфира ω-аминокислоты в присутствии триэтиламина в течение 10-14 час с предварительно обработанным водой раствором бетулоноилхлорида в...
Тип: Изобретение
Номер охранного документа: 0002684288
Дата охранного документа: 05.04.2019
19.04.2019
№219.017.3465

Способ переработки березовой коры с получением бетулина и субериновых кислот

Изобретение относится к химической переработке березовой коры с получением бетулина и субериновых кислот. Способ включает экстракцию бетулина из бересты метилтретбутиловым эфиром. Затем кору обрабатывают водным раствором NaOH. Водно-щелочной раствор, сливаемый с бересты для извлечения...
Тип: Изобретение
Номер охранного документа: 0002460741
Дата охранного документа: 10.09.2012
10.05.2019
№219.017.5154

N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов

Изобретение относится к новым соединениям общей формулы I а-с. Технический результат: получены новые соединения, которые могут использоваться в качестве ингибиторов репродукции ортопоксвирусов. 2 табл., 2 пр.
Тип: Изобретение
Номер охранного документа: 0002687254
Дата охранного документа: 08.05.2019
Показаны записи 101-110 из 139.
19.08.2018
№218.016.7e03

6,13,13-триметил-6,8,9,12-тетрагидро-6,9-метаноазепино[2,1-b]хиназолин-10(7н)-он в качестве ингибитора вирусов гриппа а

Изобретение относится к области органической химии, а именно к новому соединению 6,13,13-триметил-6,8,9,12-тетрагидро-6,9-метаноазепина[2,1-b]хинозалин-10(7Н)-ону формулы I. Технический результат: получено новое гетероциклическое соединение, обладающее полезной биологической активностью,...
Тип: Изобретение
Номер охранного документа: 0002664331
Дата охранного документа: 16.08.2018
25.08.2018
№218.016.7f69

Замещенные октагидрохромены в качестве средства против вируса гриппа

Изобретение относится к области медицины и фармацевтики и касается применения замещенных октагидрохроменов общей формулы 1, включая их пространственные изомеры: где R и R могут быть метильной или этильной группой и являются одинаковыми или R и R совместно образуют циклопентановый или...
Тип: Изобретение
Номер охранного документа: 0002664728
Дата охранного документа: 22.08.2018
16.11.2018
№218.016.9e09

Замещенные аминобензопентатиепины в качестве антимикробных средств

Изобретение относится к области медицины, а именно к терапии, и предназначено для лечения бактериальных и грибковых инфекций. В качестве антибактериальных и фунгицидных средств применяют замещенные аминобензопентатиепины общей формулы 1 где R=СН (Ia), R=CF (Ib). Использование изобретения...
Тип: Изобретение
Номер охранного документа: 0002672472
Дата охранного документа: 15.11.2018
20.02.2019
№219.016.c136

Применение усниновой кислоты в качестве синергиста инсектицидов на основе энтомопатогенных микроорганизмов

Изобретение относится к сельскому и лесному хозяйству и может быть использовано для повышения биологической эффективности инсектицидных препаратов на основе энтомопатогенных микроорганизмов. Повышение эффективности инсектицидных препаратов достигается путем использования усниновой кислоты в...
Тип: Изобретение
Номер охранного документа: 0002328493
Дата охранного документа: 10.07.2008
01.03.2019
№219.016.ce1d

Применение 2-гидрокси-3-метил-6-(1-метилэтенил)циклогекс-3-енона в качестве анальгезирующего средства

Предложено применение 2-гидрокси-3-метил-6-(1-метилэтенил)цикло-гекс-3-енона (соединение формулы 1) в качестве анальгезирующего средства. Средство обладает высокой активностью, низкой токсичностью, может быть использовано в медицине. Средство может быть получено из доступного природного...
Тип: Изобретение
Номер охранного документа: 0002421213
Дата охранного документа: 20.06.2011
01.03.2019
№219.016.ce30

Способ получения пакистанамина и берберина хлорида из berberis sibirica

Изобретение относится к фармацевтической и химической промышленности, в частности к способу получения пакистанамина и берберина хлорида. Предлагается способ получения пакистанамина и берберина хлорида путем экстракции корней барбариса сибирского (Berberis sibirica Pall) органическими...
Тип: Изобретение
Номер охранного документа: 0002423992
Дата охранного документа: 20.07.2011
01.03.2019
№219.016.ce55

Способ получения 2,3-эпоксипинана из скипидара

Изобретение относится к области химии терпеновых соединений, а именно к получению 2,3-эпоксипинана формулы I Способ заключается в следующем: скипидар, содержащий 75.6% α-пинена, обрабатывают разбавленной перекисью водорода в ацетонитриле в условиях каталитического действия сульфата марганца...
Тип: Изобретение
Номер охранного документа: 0002425040
Дата охранного документа: 27.07.2011
01.03.2019
№219.016.cfde

2-(4-гидрокси-3-метоксифенил)-4,7-диметил-3,4,4а,5,8,8а-гексагидро-2н-хромен-4,8-диол - новое анальгезирующее средство

Изобретение относится к 2-(4-гидрокси-3-метоксифенил)-4,7-диметил-3,4,4а,5,8,8а-гексагидро-2Н-хромен-4,8-диолу общей формулы 1, включая его пространственные изомеры, в том числе оптически активные формы, в том числе в виде солей с катионами металлов по фенольной группе: Обнаружено, что такое...
Тип: Изобретение
Номер охранного документа: 0002430100
Дата охранного документа: 27.09.2011
08.03.2019
№219.016.d49f

Способ получения оптически активного 5-метокси-2-((4-метокси-3,5-диметилпиридин-2-ил)метилсульфинил)-1н-бензо[d]имидазола

Изобретение относится к способу получения оптически активного 5-метокси-2-((4-метокси-3,5-диметилпиридин-2-ил)метилсульфинил)-1Н-бензо[d]имидазола, проявляющего противоязвенную активность, путем энантиоселективного окисления органическими пероксидами...
Тип: Изобретение
Номер охранного документа: 0002341524
Дата охранного документа: 20.12.2008
15.03.2019
№219.016.e092

Способ получения 2-(оксиран-2-ил)-этанола

Изобретение относится к новому способу получения 2-(оксиран-2-ил)-этанола формулы (1), являющемуся ценным полупродуктом для получения различных биологически активных веществ, в том числе и в энантиомерно чистом виде. Способ получения заключается в этерификации яблочной кислоты, нуклеофильном...
Тип: Изобретение
Номер охранного документа: 0002384577
Дата охранного документа: 20.03.2010
+ добавить свой РИД