×
27.02.2014
216.012.a5b1

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАЛЬЦИЙ-ФОСФАТНЫХ СТЕКЛОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002508132
Дата охранного документа
27.02.2014
Аннотация: Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для формирования зубных пломб, зубных паст. Способ включает приготовление смеси, содержащей соединения кальция, фосфора, кремния и натрия, пропитку полученной смесью биоинертной не выгорающей пористой матрицы в виде керамики из оксидов алюминия или циркония с последующим прокаливанием, при этом в качестве соединения кремния используют тетраэтоксисилан, в качестве соединения фосфора используют эфир фосфорной кислоты, а в качестве соединений кальция и натрия используют их карбоксилаты в полярном органическом растворителе. Способ обеспечивает получение стеклокерамики непосредственно из раствора, минуя стадию приготовления золя, что позволяет формировать на пористых биоинертных имплантатах биоактивные кальций-фосфатные слои, повторяющие форму пор, что существенно упрощает способ и сокращает время процесса. Кроме того, способ предусматривает формирование тонких слоев на более прочной биоинертной пористой керамике. При этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 6 з.п. ф-лы, 5 пр.

Изобретение относится к медицинской технике, в частности к получению биосовместимых имплантатов на основе фосфатов кальция, и может быть использовано в медицине, а именно в стоматологии и ортопедии.

Среди материалов для костных имплантатов особое место занимают биостекла, которые в настоящее время находят применение в ортопедии, стоматологии и челюстно-лицевой хирургии. Однако возможности непосредственного имплантирования конструкции, изготовленной из биоактивного керамического материала, для реконструкции органа с поврежденной костной тканью весьма ограничены. Причина состоит в низких показателях механической прочности, в том числе усталостной, и трещиностойкости биокерамики, биостекол и биоситаллов, которые существенно, в 10-100 раз ниже, чем у естественной костной ткани.

В отличие от кальций-фосфатной керамики гораздо более прочной является пористая керамика из оксидов алюминия или циркония. В то же время эта керамика является биоинертной, что не позволяет использовать ее в качестве имплантатов.

Известны способы получения биостекла в виде пористой керамики на основе фосфатов кальция. Пористую керамику получают в основном методом выгорающих добавок (в качестве которых используют муку, желатин, коллаген, хитозан и др.), пропиткой и последующим обжигом органических (полиуретановых) губок, либо вспениванием, например, при введении пероксида водорода.

При этом пористость, например, при использовании додецил-бензолсульфоната натрия достигает до 50-60%, а в случае глицина или агар-агара - порядка 80%. С использованием выгорающей добавки (например, муки) с размером частиц 40-200 мкм, вводимой в количестве 37 масс.%, удалось получить кальций-фосфатную керамику с объемным содержанием пор до 46%. В качестве выгорающих добавок используют также полимеры - желатин, коллаген, хитозан и др., при этом открытая пористость достигает 85%. Также используют коралл (основное вещество СаСО3), который в ходе гидротермальной обработки при 250°С в течение 24-48 ч переходит в гидроксиапатит, сохраняя исходную микроструктуру и открытую пористость. Пористая керамика имеет предел прочности при изгибе 2-11 МПа, что в два-три раза меньше необходимых значений, причем с увеличением пористости прочность материала резко снижается [Баринов С.М., Комлев B.C. Биокерамика на основе фосфатов кальция. - М.: Наука, 2005. - 204 с. - ISBN 5-02-033724-2].

Известен способ получения пористого стеклокристаллического биоактивного материала, включающий изготовление полусухой массы из порошка кальций-фосфатного стекла состава (мол.%): P2O5 - 39,10, СаО - 43,50, Al2O3 - 4,35, В2О3 - 4,35, TiO2 - 4,35, ZrO2 - 4,35 в 1% водном растворе поливинилового спирта, формование заготовок прессованием под давлением 2,5 МПа, обжиг заготовок в изотермических условиях при температуре 950°С в течение 1 часа [Бучилин Н.В., Строганова Е.Е. Спеченные стеклокристаллические материалы на основе кальций-фосфатных стекол. // Стекло и керамика. - 2008. №8 - С.8-11].

Недостатком способа является неудовлетворительная прочность получаемой пористой стеклокерамики.

Известен способ формирования пористой стеклянной подложки, включающий следующие стадии: плавление смеси, состоящей в основном из 40-60% SiO2, 5-30% Na2O, 10-35% СаО и до 12% Р2О5 при температуре 1350°С, охлаждение, измельчение полученного стекла и формирование пористой стеклянной подложки путем смешивания порошка с пенообразователем и горячего прессования порошка и пенообразователя в вакууме [пат. США №5676720, опубл. 14.10.1997].

К недостаткам этого способа относятся высокая температура варки стекла, многостадийность и недостаточная прочность получаемой пористой стеклокерамики.

В качестве наиболее близкого аналога выбран способ получения биостекла 45S5, содержащего кальций, фосфор, натрий и кремний [Junmin Qian, Yahong Kang, Zilin Wei, Wei Zhang. Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane. Materials Science and Engineering: 2009. v.29. №4. pp.1361-1364]. Способ осуществляют следующим образом: тетра-этоксисилан и триэтилфосфат смешивают с 1-молярным раствором азотной кислоты и в течение 60 минут осуществляют гидролиз при перемешивании. Затем к смеси постепенно добавляют нитраты кальция и натрия. После 6-часового перемешивания получают прозрачную жидкость. Для созревания золя смесь выдерживают 5 дней в запаянном контейнере. В результате получают золь с содержанием твердой фазы 35%. Этим золем пропитывают крупнопористый материал из сахарного тростника (с диаметром пор ~ 10 мкм), который в дальнейшем подвергают термообработке при 1030°С. При этом тростниковая матрица выгорает и образуется пористый стеклокерамический материал.

К недостаткам способа относятся многостадийность, длительность процесса и недостаточная прочность получаемой стеклокерамики.

Задачей заявляемого изобретения является упрощение способа получения пористой кальций-фосфатной стеклокерамики за счет сокращения времени и числа стадий, а также повышение прочности получаемых материалов путем создания биоактивных слоев, повторяющих форму пор, на более прочных пористых биоинертных имплантатах.

Поставленная задача решается тем, что в способе получения кальций-фосфатных стеклокерамических материалов, включающем приготовление смеси, содержащей соединения кальция, фосфора, кремния и натрия, пропитку полученной смесью биоинертной пористой матрицы с последующим прокаливанием, при этом в качестве соединения кремния используют тетраэтоксисилан, в качестве соединения фосфора используют эфир фосфорной кислоты, в отличие от известного способа, в качестве соединений кальция и натрия используют их карбоксилаты в полярном органическом растворителе, в качестве биоинертной матрицы используют невыгорающую пористую матрицу, а прокаливание после пропитки ведут при температуре 1000-1200°С.

При этом приготовление раствора для пропитки биоинертной керамики ведут при нагревании до полного растворения соединений кальция, фосфора, кремния и натрия, в качестве карбоксилатов кальция и натрия используют их олеаты, в качестве полярного органического растворителя используют, например, скипидар или бензол, в качестве эфира фосфорной кислоты используют, например, триэтилфосфат или трибутилфосфат, в качестве невыгорающей пористой матрицы используют прочную керамику из оксидов алюминия или циркония, перед прокаливанием пропитанную раствором пористую матрицу нагревают до 200-250°С для удаления избытка растворителя.

В общем случае способ осуществляют следующим образом.

Компоненты стекла в виде олеата кальция и олеата натрия в заданном соотношении растворяют в полярном органическом растворителе. В полученный раствор добавляют в заданном соотношении триэтилфосфат или трибутилфосфат, тетраэтоксисилан и нагревают до 160-180°С до полного растворения всех компонентов. Для получения биоактивных имплантатов полученным раствором пропитывают пористые биоинертные имплантаты с последующим нагреванием при 200-250°С для удаления избытка растворителя и прокаливают при температуре 1000-1200°С. При этом происходит формирование на пористых биоинертных имплантатах тонких биоактивных кальций-фосфатных стеклокерамических слоев, повторяющих форму пор.

Проведение высокотемпературной обработки промежуточного продукта в указанном интервале температур обусловлено тем, что в этих условиях обеспечивается полное сгорание органического вещества и образование стеклокерамической фазы целевого продукта, в связи с чем повышение температуры выше 1200°С экономически нецелесообразно. Экспериментально установлено, что время термообработки остатка, полученного после отгонки растворителя, при температуре 1000-1200°С составляет не более 1 часа.

Благодаря использованию более прочной (по сравнению с известной пористой матрицей) невыгорающей керамической пористой биоинертной матрицы из оксидов алюминия или циркония, пропитанных полученным раствором, содержащим компоненты стекла: тетраэтоксисилана, триэтилфосфата или трибутилфосфата и карбоксилатов кальция и натрия в полярном органическом растворителе, на пористой матрице непосредственно из раствора (а не из золя) формируются тонкие кальций-фосфатные слои, повторяющие форму пор. В результате получаются биосовместмые кальций-фосфатные материалы.

Техническим результатом предлагаемого изобретения является достижение возможности получения биоактивной стеклокерамики не из золя, а непосредственно из раствора, легко проникающего в поры матрицы, минуя стадию образования золя, что позволяет формировать на прочных пористых биоинертных имплантатах биоактивные кальций-фосфатные слои, повторяющие форму пор, что существенно упрощает способ и сокращает время процесса. При этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов.

Возможность осуществления заявляемого изобретения подтверждается следующими примерами.

Пример 1. В 20 мл скипидара при нагревании растворяют 1,1 г олеата кальция, 1,0 г олеата натрия, добавляют 0,1 мл трибутилфосфата и 0,7 мл тетраэтоксисилана. Нагревание ведут при температуре 180°С до полного растворения всех компонентов. Этим раствором пропитывают пористую биоинертную керамику из оксида алюминия. Пропитанную керамику сначала нагревают до 200-250°С для удаления избытка скипидара, а затем прокаливают при температуре 1100°С в течение 1 часа. В результате получают биоактивную керамику с тонким биоактивным покрытием, отвечающим составу кальций-фосфатной стеклокерамики, содержащей, в %: P2O5 - 6, СаО - 24,5, Na2O - 24,5, SiO2 - 45,0.

Пример 2. В 20 мл бензола при нагревании растворяют 1,1 г олеата кальция, 0,96 г олеата натрия, добавляют 0,1 мл трибутилфосфата и 0,7 мл тетраэтоксисилана. Нагревание ведут при температуре 170°С до полного растворения всех компонентов. Этим раствором пропитывают пористую биоинертную керамику из оксида алюминия. Пропитанную керамику сначала нагревают при 200-250°С для удаления избытка бензола, а затем прокаливают при температуре 1200°С в течение 0,5 часа. В результате получают биоактивную керамику с тонким биоактивным покрытием, отвечающим составу кальций-фосфатной стеклокерамики, содержащей в %: P2O5 - 6, СаО - 25,5, Na2O - 23,5, SiO2 - 45,0.

Пример 3. В 20 мл скипидара при нагревании растворяют 1,1 г олеата кальция, 0,92 г олеата натрия, добавляют 0,1 мл трибутилфосфата и 0,7 мл тетраэтоксисилана. Нагревание ведут при температуре 180°С до полного растворения всех компонентов. Этим раствором пропитывают пористую биоинертную керамику из оксида циркония. Пропитанную керамику сначала нагревают при 200-250°С для удаления избытка скипидара, а затем прокаливают при температуре 1000°С в течение 1 часа. В результате получают биоактивную керамику с тонким биоактивным покрытием, отвечающим составу кальций-фосфатной стеклокерамики, содержащей в %: P2O5 - 6, СаО - 26,5, Na2O - 22,5, SiO2 - 45,0.

Пример 4. В 20 мл скипидара при нагревании растворяют 1,1 г олеата кальция, 0,92 г олеата натрия, добавляют 0,1 мл триэтилфосфата и 0,7 мл тетраэтоксисилана. Нагревание ведут при температуре 180°С до полного растворения всех компонентов. Этим раствором пропитывают пористую биоинертную керамику из оксида циркония. Пропитанную керамику сначала нагревают при 200-250°С для удаления избытка скипидара и затем прокаливают при температуре 1150°С в течение 55 мин. В результате получают биоактивную керамику с тонким биоактивным покрытием, отвечающим составу кальций-фосфатной стеклокерамики, содержащей в %: P2O5 - 7, СаО - 26,5, Na2O - 22,5, SiO2 - 44,0.

Пример 5. В 20 мл скипидара при нагревании растворяют 1,1 г олеата кальция, 0,92 г олеата натрия, добавляют 0,1 мл триэтилфосфата и 0,7 мл тетраэтоксисилана. Нагревание ведут при температуре 160°С до полного растворения всех компонентов. Этим раствором пропитывают пористую биоинертную керамику из оксида циркония. Пропитанную керамику сначала нагревают при 200-250°С для удаления избытка скипидара, а затем прокаливают при температуре 1100°С в течение 1 часа. В результате получают биоактивную керамику с тонким биоактивным покрытием, отвечающим составу кальций-фосфатной стеклокерамики, содержащей в %: P2O5 - 7, СаО - 26,5, Na2O - 22,5, SiO2 - 44,0.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 126.
10.05.2018
№218.016.4917

Способ получения фосфатного люминофора синего цвета свечения

Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных ламп, светоизлучающих диодов, плазменных дисплейных панелей, электронно-лучевых трубок и медицинских приборов для лечения онкозаболеваний методом фотодинамической терапии. Сначала к...
Тип: Изобретение
Номер охранного документа: 0002651028
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.59ae

Крепежная вставка

Изобретение относится к крепежным устройствам, а именно к устройствам для прикрепления и/или соединения между собой конструктивных элементов с помощью крепежных элементов типа гвоздя, дюбеля, шурупа или винта и связующего состава. Крепежная вставка выполнена с возможностью размещения внутри...
Тип: Изобретение
Номер охранного документа: 0002655293
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5a53

Дигидрат додекагидро-клозо-додекабората 5-аминотетразол никеля и способ его получения

Изобретение относится к дигидрату додекагидро-клозо-додекабората 5-аминотетразол никеля состава [Ni(CHN)]BH⋅2HO. Также предложен способ его получения. Синтезированное соединение может найти применение в качестве энергоемких компонентов различных составов, например, пиротехнических, так как...
Тип: Изобретение
Номер охранного документа: 0002655393
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5bff

Комплексная установка для производства сорбционных материалов

Изобретение относится к комплексу оборудования, предназначенного для получения сорбционных материалов для обработки и очистки жидких сред, зараженных токсичными и радиоактивными веществами, преимущественно для извлечения долгоживущих радионуклидов цезия и стронция из высокосолевых растворов, в...
Тип: Изобретение
Номер охранного документа: 0002655900
Дата охранного документа: 29.05.2018
25.06.2018
№218.016.66fb

Способ извлечения радионуклидов цезия из водных растворов

Изобретение относится к радиоаналитической химии, конкретно к технологии сорбционного извлечения из водных сред радионуклидов цезия, их концентрирования и определения содержания в исходном растворе. Способ предусматривает динамическую обработку раствора путем фильтрации через слой смешанного...
Тип: Изобретение
Номер охранного документа: 0002658292
Дата охранного документа: 20.06.2018
11.10.2018
№218.016.905c

Способ получения структурированного пористого покрытия на титане

Изобретение относится к способу модификации поверхности титана с получением структурированного пористого слоя, содержащего нано- и микропоры, и может быть использовано в медицинской технике при изготовлении обладающих биологической совместимостью эндопротезов и имплантатов для травматологии,...
Тип: Изобретение
Номер охранного документа: 0002669257
Дата охранного документа: 09.10.2018
19.10.2018
№218.016.93ff

Способ иммобилизации радионуклидов cs+ в алюмосиликатной керамике

Изобретение относится к способам иммобилизации радионуклидов в керамике и предназначено для прочной иммобилизации и длительной консервации радиоактивных отходов, в том числе отходов атомной энергетики, отработанных сорбентов, содержащих радионуклиды, а также может найти применение в...
Тип: Изобретение
Номер охранного документа: 0002669973
Дата охранного документа: 17.10.2018
07.12.2018
№218.016.a457

Способ комплексной переработки сточных вод гальванических производств

Изобретение может быть использовано на гальванических производствах в процессах хромирования, химического оксидирования, электрохимической полировки, травления и пассивации металлов и сплавов. Способ включает обработку хромсодержащих сточных вод раствором NaSO, подщелачивание 10% раствором...
Тип: Изобретение
Номер охранного документа: 0002674206
Дата охранного документа: 05.12.2018
18.01.2019
№219.016.b177

Способ получения защитных покрытий на вентильных металлах и их сплавах

Изобретение относится к плазменно-электролитическому нанесению покрытий на вентильные металлы и их сплавы и может найти применение в различных отраслях промышленности, в машиностроении, приборостроении для работы в узлах трения и для защиты изделий и сооружений от атмосферной и...
Тип: Изобретение
Номер охранного документа: 0002677388
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b811

Способ получения керамического ядерного топлива

Изобретение относится к технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы, в частности порошок диоксида урана. Cпособ предусматривает искровое плазменное спекание подпрессованного порошка диоксида урана UO в молибденовой...
Тип: Изобретение
Номер охранного документа: 0002679117
Дата охранного документа: 06.02.2019
Показаны записи 61-70 из 75.
11.03.2019
№219.016.dc1c

Способ получения наноразмерных порошков гидроксиапатита

Изобретение может быть использовано в технологии сорбентов и медицинских материалов. Наноразмерные порошки гидроксиапатита получают взаимодействием органического производного кальция с органическим производным фосфора в органическом полярном растворителе при атомном отношении кальция к фосфору...
Тип: Изобретение
Номер охранного документа: 0002457174
Дата охранного документа: 27.07.2012
10.04.2019
№219.017.07db

Способ получения нанодисперсных манганитов редкоземельных металлов

Изобретение может быть использовано в производстве магниторезисторов, материалов для создания головок магнитной записи, катализаторов. Приготавливают водный раствор соли марганца и соли редкоземельного металла. Из полученного раствора экстрагируют соединения марганца бензольным раствором,...
Тип: Изобретение
Номер охранного документа: 0002402489
Дата охранного документа: 27.10.2010
18.05.2019
№219.017.53c9

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III),...
Тип: Изобретение
Номер охранного документа: 0002687748
Дата охранного документа: 16.05.2019
08.06.2019
№219.017.75ac

Способ получения борсодержащего биоактивного стекла

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата...
Тип: Изобретение
Номер охранного документа: 0002690854
Дата охранного документа: 06.06.2019
10.07.2019
№219.017.b163

Способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку...
Тип: Изобретение
Номер охранного документа: 0002465047
Дата охранного документа: 27.10.2012
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
13.02.2020
№220.018.01ee

Рентгеноконтрастное биоактивное стекло и способ его получения

Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и способу ее получения, и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и...
Тип: Изобретение
Номер охранного документа: 0002714035
Дата охранного документа: 11.02.2020
29.02.2020
№220.018.072a

Способ переработки ильменитового концентрата

Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от...
Тип: Изобретение
Номер охранного документа: 0002715193
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.0748

Способ переработки ильменитового концентрата

Изобретение относится к переработке природного титансодержащего сырья с получением диоксида титана рутильной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002715192
Дата охранного документа: 25.02.2020
12.04.2023
№223.018.48ab

Способ получения ортоборатов лантана, допированных европием и висмутом

Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и...
Тип: Изобретение
Номер охранного документа: 0002762551
Дата охранного документа: 21.12.2021
+ добавить свой РИД