×
18.05.2019
219.017.53c9

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III), концентрированным раствором аммиака при значении рН реакционной смеси не менее 10 в присутствии стабилизатора - лимонной кислоты, взятой из расчета 0,02-0,5 моль на 1 моль образующегося по стехиометрии коллоидного FeO, который обрабатывают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов, после чего выделяют декантацией на внешнем магните и промывают. Добавляют к полученному осадку водный раствор аммиака, затем в полученную суспензию вводят лимонную кислоту и раствор тантала во фтористоводородной кислоте при рН реакционной смеси 9-11. Обрабатывают полученную смесь в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов с получением осадка ферримагнитных частиц FeO размером 70-400 нм, покрытых рентгеноконтрастной оболочкой оксида тантала TaO. Отфильтровывают и промывают полученный осадок. Технический результат - повышение устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации, улучшение стабильности его водной суспензии за счет оптимизации размеров его частиц при одновременном увеличении прочности и повышении адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру. 1 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных, преимущественно полых, органов.

В рентгенологической практике среди рентгеноконтрастных средств главное место занимают йодсодержащие препараты. Однако их использование для контрастирования полых органов и внутрисосудистого введения сопровождается рядом побочных эффектов. Отмечено их токсическое действие на кровь, почки, печень и щитовидную железу. Наиболее перспективными для рентгенодиагностики являются нетоксичные рентгеноконтрастные соединения тантала. В то же время рентгеноконтрастные препараты не могут необходимое время быть зафиксированными в нужной области из-за протекающих физиологических процессов, обусловленных током крови, лимфы и сократительной деятельности полых органов, что обусловливает интерес к созданию магнитоуправляемых нетоксичных рентгеноконтрастных средств, содержащих в качестве магнитных частиц ферримагнетики, в частности, магнетит.

Известно (RU 2497546, опубл. 2013.11.10) контрастное средство, используемое в диагностике для проведения магнитно-резонансной томографии и рентгеновской компьютерной томографии и способ его получения. Известное средство содержит сложный оксид железа в концентрации 600 мг/мл, а также 2,4 мг/л лимонной кислоты для стабилизации размера частиц сложного оксида железа в диапазоне 5-10 нм, 140 мг/мл цитрата натрия для стабилизации структуры контрастного средства, 160 г/л полиэтиленгликоля и 460 мг/мл воды для инъекций. Способ получения указанного выше контрастного средства включает интенсивное перемешивание на скорости 800 об/мин растворенных в воде солей трех- и двухвалентного железа и гидрата аммония с получением высокодисперсного сложного оксида железа, добавление к нему лимонной кислоты с последующим введением полиэтиленгликоля и разбавленного в воде цитрата натрия при интенсивном перемешивании, охлаждение полученного продукта и отделение от него нерастворенного цитрата натрия. Известное средство и способ его получения характеризуются следующими недостатками. Частицы магнетита с размерами в диапазоне 5-10 нм являются однодоменными и теряют ферримагнитные свойства. Известно, что для ферримагнетиков существует критический размер (dкр), ниже которого его частицы становятся однодоменными. Для ферримагнетика Fe3O4 при комнатной температуре экспериментально установленное значение dкр≥50 нм. Частицы с размером меньше критического переходят в суперпарамагнитное состояние, вследствие чего уже не могут удерживаться внешним магнитным полем в заданной области, например, в зоне злокачественной опухоли. Недостатком, связанным с малым размером частиц магнетита, является сложность их отделения от других продуктов реакции. Эти частицы в присутствии ПАВ (лимонной кислоты) практически невозможно осадить простым отстаиванием и промыть, как указано в известном патенте. Для отмывания таких частиц в процессе синтеза необходимо высокооборотное центрифугирование. Кроме того, установлено, что оболочка из полиэтиленгликоля (ПЭГ), согласно известному способу формируемая на наночастицах магнетита, может оказывать отрицательное воздействие на живой организм. Исследования показывают, что обработанные полиэтиленгликолем эритроциты становятся иммуногенными и обладают, соответственно, низкой выживаемостью в организме реципиента при трансфузии.

Наиболее близким к заявляемому является способ получения дисперсного магнитоактивного рентгеноконтрастного средства (RU 2639567, опубл. 2017.12.12), содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из соответствующих растворов, содержащих соединения железа либо соединения тантала, с помощью раствора аммиака при рН смеси не менее 10 в присутствии олеата натрия в качестве стабилизатора, при этом в водный раствор, содержащий соль железа (II) и соль железа (III), добавляют концентрированный раствор аммиака до значения рН смеси не менее 10 и раствор олеата натрия; в полученную смесь вводят содержащий тантал водный фторидный либо водный сульфооксалатный раствор, добавляют раствор аммиака до значения рН не менее 10 и раствор олеата натрия, перемешивают в течение 5-10 минут.Дают отстояться в течение 0,5 часа, сливают часть раствора над осадком, а оставшуюся пульпу фильтруют. Осадок на фильтре дважды промывают водой, после чего его распульповывают в воде и диспергируют ультразвуком.

Недостатком известного способа является формирование крупных частиц с ферритным ядром микронных размеров, подверженных быстрой седиментации в составе суспензии и требующих диспергирования перед применением, причем при длительном хранении выпавший осадок частиц магнитоактивного рентгеноконтрастного средства, полученного известным способом, настолько уплотняется, что практически не поддается диспергированию. Под действием аммиака на поверхности ферримагнитных частиц Рез04 формируется аморфный слой оксида тантала с низкой адгезией к ядру, что также отрицательно сказывается на стабильности полученного средства, сохранении его свойств с течением времени.

Задачей изобретения является создание способа получения магнитоактивного рентгеноконтрастного средства, устойчивого к седиментации и стабильного при хранении.

Технический результат способа заключается в повышении устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации и улучшении стабильности его водной суспензии за счет формирования частиц оптимального размера, увеличения их прочности и возрастания адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру.

Указанный технический результат достигают способом получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из раствора, содержащего соли железа (II) и железа (III), и, соответственно, из раствора тантала во фтористоводородной кислоте с помощью концентрированного раствора аммиака, используемого в количестве, обеспечивающем значение рН реакционной смеси не менее 9, в присутствии стабилизатора, с последующим выделением и промыванием осажденных продуктов, в котором, в отличие от известного, в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моля на 1 моль образующегося магнетита Fe3O4, при этом полученный виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок Fe3O4, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моля на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 1800С в течение 12-16 часов и после промывания подвергают лиофильной сушке. Способ осуществляют следующим образом.

Готовят смесь растворимых солей двух- и трехвалентного железа, например, сульфата FeSO4 и хлорида FeCl3, с лимонной кислотой и добавляют при перемешивании 4-12 М водный раствор аммиака до значения рН=10-11 и выше.

Коллоидный раствор магнетита, образующегося в процессе синтеза согласно уравнению реакции:

FeSO4+2FeCl3+8NH4OH=Fe3O4+6NH4Cl+(NH4)2SO4+4H2O,

содержит аморфные частицы Fe3O4, размер который, как установлено экспериментально, находится в непосредственной зависимости от концентрации лимонной кислоты в реакционной смеси, при этом их оптимальный размер обеспечивается при соотношении 0,02-0,5 моля лимонной кислоты на один моль синтезируемого магнетита.

Таким образом, для получения частиц магнетита размером 70-400 нм, который является оптимальным для обеспечения устойчивости его суспензии, берут 1 моль сульфата FeSO4, 2 моля хлорида FeCl3 и лимонную кислоту из расчета 0,02-0,5 молей на 1 моль синтезируемого Fe3O4. Образовавшийся после добавления концентрированного раствора аммиака коллоидный раствор, содержащий магнетит Fe3O4 в виде аморфных частиц, помещают в автоклав.

После обработки полученного коллоидного раствора в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов аморфные частицы Fe3O4 переходят в кристаллическое состояние. Эти частицы размером 70-400 нм выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.

К полученным ферримагнитным частицам добавляют 4-12 М водный раствор аммиака с получением суспензии. В подготовленную суспензию вводят лимонную кислоту из расчета 0,02-0,5 молей на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, поддерживая значение рН реакционной смеси в интервале 10-11. На поверхности ферримагнитных частиц Fe3O4 формируется рентгеноконтрастный слой оксида тантала, для стабилизации и закрепления которого полученный продукт нагревают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов. Образовавшиеся ферримагнитные рентгеноконтрастные наночастицы выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.

Благодаря оптимальному размеру частиц магнитоактивного рентгеноконтрастного средства, полученного предлагаемым способом при заявленном соотношении исходных компонентов, его препараты в виде суспензии в физиологическом растворе, спонтанно не седиментируют в течение длительного времени, и как показывает эксперимент, не осаждаются центрифугированием при 3000 об/мин в течение 10 мин.

Результаты экспериментальной проверки зависимости размера формируемых частиц Fe3O4, определяющего скорость седиментации получаемого средства и его магнитные свойства, от относительного содержания используемой в качестве стабилизатора лимонной кислоты даны в таблице и частично отражены в приведенных примерах.

Средство обладает хорошими магнитными и рентгеноконтрастными характеристиками. Его препараты, не содержащие поверхностно-активных веществ и полиэтиленгликоля, обнаруживают хорошую биосовместимость. Как показали эксперименты, они нетоксичны для мышей при перитонеальном введении в дозе 20 г/кг.

Примеры конкретного осуществления способа.

Пример 1

К смеси, содержащей 10 мл 1 MFeSO4, 20 мл 1 М FeCl3 и 3 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11. При этом образуется 0.01 моль магнетита (мольное отношение лимонная кислота/магнетит равно 0,3). Нагревали при 100°С в течение 30 мин, затем при 180°С в течение 12 часов. Наночастицы Fe3O4 выделяли путем декантации на магните, отмывали дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы с размерами, близкими к 107 нм.

Далее к суспензии, содержащей 1,45 г полученных, как описано выше, частиц Fe3O4 в 22 мл 4 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте, при значении рН реакционной среды равном 9.

Затем нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов. Полученные наночастицы выделяли декантацией на внешнем магните, десятикратно промывали дистиллированной водой и лиофильно высушивали. В результате получено магнитоактивное рентгеноконтрастное средство типа ядро-оболочка Fe3O4@Ta2O5.

Препарат в виде порошкообразного средства, суспензированного в физиологическом растворе, устойчив к седиментации в течение длительного времени, не осаждается центрифугированием при 3000 об/мин в течение 10 мин. Нетоксичен для мышей при перитонеальном введении в дозе 20 г/кг и ниже.

Пример 2

К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11 (мольное отношение лимонная кислота/магнетит равно 0,1). Нагревали при 100°С в течение 30 мин и при 180°С в течение 12 часов. Наночастицы отмывали декантацией на магните дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы размером примерно 125 нм.

Далее к суспензии, содержащей 1,45 г полученного Fe3O4 (6,25 ммоля) в 22 мл 12 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте при рН реакционной смеси 9. нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов.

Дальнейшую обработку проводили аналогично примеру 1 с получением аналогичного результата. Пример 3

При добавлении к смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 М раствор лимонной кислоты в количестве 6 мл (мольное отношение лимонная кислота/магнетит более 0,5), 4 М водного раствора аммиака образуются частицы магнетита с размерами меньше критического, не обладающие ферримагнитными свойствами. Частицы с такими размерами являются суперпарамагнитными, полученное средство на их основе с ядром из Fe3O4 и оболочкой из Ta2O5 при исследованиях не может удерживаться магнитным полем в заданной зоне, например, в зоне злокачественного новообразования.

Пример 4

К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и одномолярный раствор лимонной кислоты в количестве 0,1 мл (мольное отношение лимонная кислота/магнетит менее 0,02), добавляли аммиак в виде 4 М водного раствора. В результате получались слишком крупные (микронного размера) частицы магнетита, которые оседали в физиологическом растворе в течение 30 мин без внешнего магнитного поля. Использование магнитоактивного средства с ядром такого размера нецелесообразно, тем более что, при длительном хранении его осадок сильно уплотняется и не поддается суспензированию.

* - - не оседают на постоянном магните, +- оседают в течение 2 мин, ++-оседают в течение 15 сек, +++- оседают мгновенно

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа FeO и оксид тантала TaO, путем их последовательного осаждения соответственно из раствора, содержащего соли железа (II) и железа (III), и из раствора тантала во фтористоводородной кислоте концентрированным раствором аммиака при рН смеси не менее 9 в присутствии стабилизатора с последующим выделением и промыванием полученных частиц, отличающийся тем, что в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моль на 1 моль образующегося магнетита FeO, при этом полученный в виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок FeO, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моль на 1 моль содержащегося в суспензии FeO и раствор тантала во фтористоводородной кислоте и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов и после промывания подвергают лиофильной сушке.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 125.
10.04.2013
№216.012.338b

Способ получения магнитоактивных покрытий на титане и его сплавах

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной...
Тип: Изобретение
Номер охранного документа: 0002478738
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.36b7

Способ получения борфторсодержащей энергоемкой композиции

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив. Сначала к водному гелю,...
Тип: Изобретение
Номер охранного документа: 0002479560
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.4890

Способ переработки медьсодержащих шламов гальванических производств

Изобретение относится к способам переработки техногенных отходов с извлечением тяжелых металлов и может найти применение при утилизации медьсодержащих шламов гальванических производств для получения товарного продукта в виде бронзы, а также шлаков, пригодных для использования в производстве...
Тип: Изобретение
Номер охранного документа: 0002484156
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.5457

Способ консервации археологических находок из железа и его сплавов

Изобретение относится к области консервации металлических изделий, в частности археологических находок из железа и его сплавов, и может быть использовано в археологии и музейном деле. Способ включает очистку археологического объекта, его гидротермальную обработку в разбавленном щелочном...
Тип: Изобретение
Номер охранного документа: 0002487194
Дата охранного документа: 10.07.2013
20.12.2013
№216.012.8d24

Способ получения нанодисперсного фторопласта

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей. Способ...
Тип: Изобретение
Номер охранного документа: 0002501815
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.906f

Способ получения углеродного наноматериала и углеродный наноматериал

Изобретение может быть использовано в производстве катализаторов, электродов, токопроводящих элементов, фильтров. Твердый политетрафторэтилен (ПТФЭ) подвергают пиролизу без доступа воздуха в плазме импульсного высоковольтного электрического разряда при атмосферном давлении с амплитудой...
Тип: Изобретение
Номер охранного документа: 0002502668
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a25e

Способ обработки смеси оксидов ниобия и/или тантала и титана

Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В...
Тип: Изобретение
Номер охранного документа: 0002507281
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5b1

Способ получения кальций-фосфатных стеклокерамических материалов

Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для...
Тип: Изобретение
Номер охранного документа: 0002508132
Дата охранного документа: 27.02.2014
10.06.2014
№216.012.cd06

Способ формирования покрытий пентаоксида тантала на подложке

Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ...
Тип: Изобретение
Номер охранного документа: 0002518257
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d447

Способ получения оптически активной стеклокерамики на основе фторидных стекол, допированных соединениями рзэ

Изобретение относится к области получения оптически активной стеклокерамики на основе фторидных стекол и может быть использовано на предприятиях стекольной и оптической промышленности для получения материалов, проводящих лазерное излучение. Способ включает введение нанопорошка фторида...
Тип: Изобретение
Номер охранного документа: 0002520114
Дата охранного документа: 20.06.2014
Показаны записи 1-10 из 39.
27.09.2013
№216.012.7037

Способ определения золота в рудах и продуктах их переработки

Изобретение относится к способам химического анализа и может быть использовано для определения содержания золота в рудах различного минералогического типа и продуктах их технологической переработки (хвостах, концентратах). Сущность: перед проведением нейтронно-активационного анализа...
Тип: Изобретение
Номер охранного документа: 0002494378
Дата охранного документа: 27.09.2013
20.02.2014
№216.012.a25e

Способ обработки смеси оксидов ниобия и/или тантала и титана

Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В...
Тип: Изобретение
Номер охранного документа: 0002507281
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5b1

Способ получения кальций-фосфатных стеклокерамических материалов

Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для...
Тип: Изобретение
Номер охранного документа: 0002508132
Дата охранного документа: 27.02.2014
10.06.2014
№216.012.cd06

Способ формирования покрытий пентаоксида тантала на подложке

Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ...
Тип: Изобретение
Номер охранного документа: 0002518257
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.eaf6

Способ формирования покрытия пентаоксида тантала на подложке из титана или его сплавов

Изобретение относится к получению оксидных покрытий тантала на подложке из титана и его сплавов и может быть использовано для формирования покрытий пентаоксида тантала для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными, оптическими характеристиками,...
Тип: Изобретение
Номер охранного документа: 0002525958
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fcc7

Способ дифференциальной диагностики злокачественной и доброкачественной патологии молочной железы

Изобретение относится к медицине, а именно к онкологии и клинической биохимии. Сущность способа заключается в том, что фиксированные клетки периферической крови обрабатывают первичными антителами к эстроген-связываюшему белку, специфически взаимодействующими с антигенами на поверхности...
Тип: Изобретение
Номер охранного документа: 0002530557
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.074a

Способ фотон-захватной терапии опухолей

Изобретение относится к медицине, а именно к лучевой терапии опухолей. Способ включает введение в опухоль средства, содержащего наноразмерные частицы золота и йодсодержащее контрастное вещество. Данное средство вводят непосредственно в опухоль, после чего проводят обработку опухоли фотонным...
Тип: Изобретение
Номер охранного документа: 0002533267
Дата охранного документа: 20.11.2014
10.02.2015
№216.013.224f

Способ переработки высокоуглеродистых золотоносных пород

Изобретение относится к металлургии благородных металлов, в частности к способу переработки упорных высокоуглеродистых золотоносных пород. Способ переработки включает флотацию графита и извлечение золота выщелачиванием кислыми растворами тиомочевины. При этом перед выщелачиванием хвосты...
Тип: Изобретение
Номер охранного документа: 0002540236
Дата охранного документа: 10.02.2015
27.06.2015
№216.013.5abc

Композиционный кальцийфосфатный цемент для костной пластики

Изобретение относится к области медицины и касается биоматериалов для заполнения дефектов костной ткани на основе реакционно-твердеющей смеси, содержащей фосфаты кальция и водорастворимый органический полимер. В качестве фосфатов кальция реакционно-твердеющая смесь содержит трикальцийфосфат...
Тип: Изобретение
Номер охранного документа: 0002554769
Дата охранного документа: 27.06.2015
10.01.2016
№216.013.9f4a

Способ переработки вольфрамовых концентратов

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO и вольфрамитовых (Fe, Mn) WOконцентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании...
Тип: Изобретение
Номер охранного документа: 0002572415
Дата охранного документа: 10.01.2016
+ добавить свой РИД