×
10.07.2019
219.017.b163

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку органического растворителя и последующую высокотемпературную обработку инертного носителя при температуре 820-870°С. В качестве органических растворов используют экстракты соединений европия и/или церия, платины и/или палладия и висмута, которые смешивают в заданном соотношении, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия в количестве 96-98 мас.%, платины и/или оксида палладия е количестве 0,5-2 мас.% и оксида висмута в количестве 1,5-2 мас.%, Технический эффект - упрочнение сцепления активного слоя с поверхностью инертного носителя за счет введения оксида висмута в качестве флюса, что повышает эффективность и длительность работы катализатора. 6 з.п. ф-лы, 9 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания (ДВС).

Известны способы получения катализаторов для очистки выхлопных газов ДВС, содержащих металлы платиновой группы, например платину, палладий, родий, осмий, нанесенные методом пропитки на инертные носители, например, такие, как пористая керамика (оксид алюминия), сталь, в том числе в виде фольги.

Известен способ получения платинового катализатора для очистки выхлопных газов ДВС (патент РФ №2307709, опубл. 10.10.2007 г.), предусматривающий нанесение слоя оксида алюминия, содержащего каталитически активный компонент - платину, на предварительно подготовленный инертный стальной носитель, с последующими операциями сушки, высокотемпературной обработки пропитанного водным раствором носителя при 850-950°С в течение 10-20 ч, обработки ультразвуком частотой 18 кГц и дополнительной обработки поверхности инертного стального носителя в щелочном растворе КОН с концентрацией 10% в течение 30-60 мин для превращения оксидов поверхностного слоя в гидроксиды. Описанный процесс приготовления катализатора занимает не менее 25 часов.

К недостаткам способа относятся его многостадийность, высокая температура и длительность процесса.

Известен способ приготовления катализатора для очистки выхлопных газов ДВС (патент РФ №2005538, опубл. 15.01.1994 г.) путем нанесения методом пропитки на инертный носитель сначала оксида церия, а затем отдельно оксидов платины и родия из водных растворов их солей. Процесс осуществляют следующим образом. Стальную фольгу с содержанием хрома около 20% и алюминия около 5% гофрируют, сворачивают в блок и подвергают окислению на воздухе при 900-950°С. На термообработанный блок наносят покрытие из оксида алюминия в растворе едкого натра при непосредственном растворении в нем алюминиевой стружки при 60-80°С с последующей промывкой, сушкой и термообработкой при 500°С. Инертный носитель с покрытиием из оксида алюминия обрабатывают раствором нитрата церия, высушивают в течение 2 часов при температуре 100-120°С и прокаливают в течение 3 часов при температуре 450°С. Далее образец помещают в хлоридный раствор платины и родия, выдерживают в течение 20-24 часов, сушат при 100-120°С в течение 2 часов и восстанавливают благородные металлы в токе водорода при 400°С в течение 5 часов.

К недостаткам способа относятся многостадийность и длительность процесса, а также необходимость использования водорода, что влечет за собой повышенные требования со стороны техники безопасности.

Известен способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания (патент РФ №2169614, опубл. 27.06.2001 г.). В качестве компонентов активной фазы катализатор содержит оксид редкоземельного металла (РЗМ), в частности церия, и благородные металлы (БМ), в частности платину, палладий и родий. Процесс осуществляют следующим образом: инертный носитель, представляющий собой гофрированную и свернутую в блок ленту из стальной фольги, содержащей около 5% алюминия, подвергают высокотемпературной обработке при 850-920°С в токе воздуха или кислорода в течение 12-15 ч. Затем на обработанный инертный носитель методом пропитки наносят промежуточное покрытие из водно-спиртовой суспензии, содержащей гидроксид алюминия, азотнокислый алюминий и азотнокислый церий. Обработанный таким образом блок провяливают (сушат) в течение нескольких (около 5) часов при комнатной температуре и далее при температуре 100-120°С в течение 2 часов, после чего подвергают термообработке при 450°С в течение 2 часов. Затем на сформировавшееся промежуточное покрытие методом пропитки водными хлоридными растворами H2PtCl6, PdCl2 или RhCl3 наносят соли платины, палладия и родия. При необходимости введения в катализатор нескольких благородных металлов, например Pt-Rh, Pt-Pd или Pt-Pd-Rh, в пропиточный раствор вводят все исходные соединения благородных металлов одновременно. После этого образец высушивают при температуре 100-120°С и восстанавливают водородом при 350-400°С в течение 6 часов.

К недостаткам способа относятся многостадийность и длительность процесса (нанесение на инертный носитель промежуточного покрытия и многостадийная сушка промежуточного покрытия в различных температурных режимах; нанесение на промежуточное покрытие активной фазы из благородных металлов платиновой группы путем пропитки соответствующими растворами с последующей сушкой, восстановлением водородом при ступенчатом подъеме температуры и выдержкой при 400°С; при этом способ предусматривает нанесение на инертный носитель последовательно сначала оксида редкоземельного элемента - церия, а затем, на следующей стадии, - оксидов благородных металлов). Кроме того, необходимость использования водорода влечет за собой повышенные требования со стороны техники безопасности.

В качестве наиболее близкого аналога по технической сущности и назначению к заявляемому способу выбран способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания (патент РФ №2417123, опубл. 27.04.2011 г.), включающий пропитку инертного носителя растворами, содержащими одно или несколько соединений редкоземельных металлов и одно или несколько соединений благородных металлов платиновой группы, и высокотемпературную обработку пропитанного раствором инертного носителя, при этом в качестве растворов для пропитки инертного носителя используют органические растворы соединений европия и/или церия и органические растворы соединений платины и/или палладия, которые смешивают в соотношении, обеспечивающем содержание в твердой активной фазе катализатора платины и/или палладия 0,5-2 мас.% и оксида европия или церия 98-99,5 мас.%, затем органический растворитель отгоняют при температуре 70-100°С, а инертный носитель подвергают термообработке при температуре 600-700°С в течение 1-2 часов.

При этом в качестве органических растворов соединений европия и церия используют экстракты, полученные экстракцией смесью хлорида триалкилбензиламмония и ацетилацетона в бензоле или смесью ацетилацетона и дипиридила в бензоле из водных хлоридных растворов, содержащих ионы европия и церия, в качестве органических растворов соединений платины и палладия используют экстракты, полученные экстракцией триоктиламином в бензоле соединений платины и палладия из водных хлоридных растворов, содержащих ионы платины и палладия.

Основным недостатком указанного способа является невысокая адгезия активного слоя к поверхности инертного носителя, что приводит к снижению активности катализатора и потерям благородных металлов.

Задачей, решаемой предлагаемым изобретением, является повышение прочности сцепления активного слоя с инертным носителем и повышение эффективности катализатора.

Поставленная задача решается за счет того, что в способе получения катализатора для очистки выхлопных газов ДВС, включающем пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия, отгонку органического растворителя при нагревании и последующую высокотемпературную обработку инертного носителя, в отличие от известного способа, в раствор для пропитки инертного носителя дополнительно вводят органический раствор соединения висмута при соотношении компонентов раствора, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия в количестве 96-98 мас.%, платины и/или оксида палладия в количестве 0,5-2 мас.% и оксида висмута 1,5-2 мас.%, а высокотемпературную обработку инертного носителя ведут при температуре 820-870°С.

В качестве инертного носителя может служить любой пористый материал на основе оксидов кремния, алюминия, титана и др.

В заявляемом способе для пропитки инертного носителя используют смесь растворов в органическом растворителе, содержащую одновременно в заданном количестве РЗМ (европий Eu и/или церий Се), БМ (платину Pt и/или палладий Pd) и висмут Bi. После пропитки носитель нагревают при температуре 70-100°С для отгонки растворителя и прокаливают при температуре 820-870°С в течение 1-2 часов. В данном интервале температур происходит плавление оксида висмута, который надежно закрепляет частицы платины, оксидов европия, церия и палладия на поверхности инертного носителя.

В качестве органических растворов соединений европия и церия используют экстракты соединений европия и церия.

Для получения экстрактов соединений европия и церия используют соответственно исходные водные хлоридные растворы, содержащие Eu3+ или Се4+. Экстракцию европия осуществляют смесью хлорида триалкилбензиламмония и ацетилацетона в бензоле или смесью ацетилацетона и дипиридила в бензоле. Экстракцию церия осуществляют смесью капроновой кислоты и ацетилацетона в бензоле.

В качестве органических растворов соединений платины, палладия и висмута используют экстракты соединений платины, палладия и висмута.

Для получения экстрактов соединений платины, палладия и висмута используют соответственно исходные водные растворы, содержащие ионы платины или палладия в хлористоводородной кислоте и висмута в азотной кислоте. Экстракцию осуществляют раствором триоктиламина в бензоле.

Способ осуществляют следующим образом.

Для пропитки инертного носителя используют смесь органических растворов (в частности, экстрактов) соединений европия и/или церия с органическими растворами (в частности, экстрактами) соединений платины и/или палладия и висмута, взятыми в соотношении, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия 96-98 мас.%, платины и/или оксида палладия 0,5-2 мас.%

и оксида висмута 1,5-2 мас.%.

Для получения экстрактов европия или церия в качестве исходных водных растворов используют хлоридные растворы, содержащие 0,0066-0,008 моль/л Eu3+ или Ce4+, рН водных фаз европия и церия, равный 7-8, поддерживают добавлением 1,1 моль/л раствора аммиака. Экстракцию европия осуществляют известным способом, например смесью 0,4 моль/л хлорида триалкилбензиламмония (ТАБАХ) и 4,85 моль/л ацетилацетона в бензоле или смесью 4,85 моль/л ацетилацетона и 0,16 моль/л дипиридила в бензоле. Экстракцию церия осуществляют смесью капроновой кислоты (0,16 моль/л) и ацетилацетона (0,974 моль/л) в бензоле. Для максимального насыщения экстрактов водные растворы европия и церия трижды контактируют с одной и той же органической фазой при соотношении объемов фаз 1:1. В результате в обоих случаях получают органическую фазу с концентрацией европия или церия 0,0066-0,008 моль/л.

Для получения насыщенных платиной или палладием экстрактов использовали трехкратную экстракцию платины или палладия 0,23 моль/л раствором триоктиламина в бензоле из водных хлоридных растворов, содержащих 0,0026-0,005 моль/л платины или палладия (в хлористоводородной кислоте 0,4 моль/л HCl), при соотношении объемов фаз 1:1. В результате получают органическую фазу с концентрацией благородного металла (БМ) 0,0026-0,005 моль/л.

Для получения экстрактов висмута раствор триоктиламина (0,23 моль/л) в бензоле насыщался 2 раза водным раствором, содержащим 0,004-0,006 моль/л Bi(NO3)3 в 2 моль/л HNO3 при соотношении объемов фаз 1:1. После разделения фаз концентрация висмута в органической фазе составляет 0,004-0,006 моль/л.

После разделения органических и водных фаз экстракты, содержащие соединения РЗМ, БМ и висмута, смешивают друг с другом в объемном соотношении соответственно 100:(1-4):2. В качестве подложки для получения нанокомпозита используют инертный носитель, например высокодисперсный аморфный диоксид кремния или пористый оксид алюминия. Пропитку образцов аморфного инертного носителя проводят смесью экстрактов соединений РМЗ, БМ и висмута в одну стадию в течение 0,5-1 часа, после чего пропитанные образцы отделяют от экстракта и нагревают при температуре 70-100°С для отгонки растворителя. Затем образцы прокаливают при температуре 820-870°С. Проведение высокотемпературной обработки промежуточного продукта в указанном интервале температур обусловлено тем, что в этих условиях обеспечивается полное сгорание органического вещества, полнота кристаллизации целевого продукта и плавление оксида висмута, что способствует более прочному закреплению частиц металлов и оксидов металлов на инертном носителе, в связи с чем повышение температуры выше 870°С нецелесообразно.

Экспериментально установлено, что время термообработки остатка, полученного после отгонки растворителя, составляет 1-2 часа.

Опытным путем установлено, что выбранные концентрации металлов в исходных водных растворах обеспечивают максимальное извлечение металлов в органическую фазу. Концентрация металлов ниже заявленного интервала приводит к снижению концентрации металлов в органической фазе, что снижает эффективность использования экстрагентов. Повышение концентрации металлов выше заявленного интервала приводит к резкому снижению их коэффициентов распределения, что, в частности, приводит к потерям металлов с рафинатом и изменению молярного соотношения металлов в органической фазе. Кроме того, при концентрации металлов ниже заявленного интервала повышается температура полной конверсии СО/CO2, а при концентрации выше заявленного предела температура полной конверсии практически не меняется, но при этом возрастает расход БМ.

По данным рентгенофазового анализа прокаленные образцы катализатора, который может быть использован для очистки выхлопных газов ДВС, представляют собой нанокомпозиты, например, состава Pt/Eu2O3/Bi2O3/Al2O3, PdO/Eu2O3/Bi2O3/SiO2, PdO/CeO2/Bi2O3/SiO2, Pt/CeO2/Bi2O3/SiO2. По данным, полученным на атомно-силовом микроскопе, размер частиц платины, оксидов палладия и РЗМ находится в интервале 20-40 нм.

Опытным путем показано, что выход целевого продукта в предлагаемом способе составляет около 95%.

Исследование полученных образцов нанокомпозитов показало, что полная конверсия СО/CO2 достигается при 270-290°С.

Техническим результатом предлагаемого изобретения в сравнении с известным способом является упрочнение сцепления активного слоя с поверхностью инертного носителя за счет введения оксида висмута в качестве флюса, что повышает эффективность и длительность работы катализатора.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1. Органические экстракты европия (0,0066 моль/л), платины (0,0026 моль/л) и висмута (0,0048 моль/л) смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют гранулированный оксид алюминия (ТУ 2163-015-44912618-2003), который пропитывают смешанным экстрактом в течение 30 мин, после чего образец отделяют от экстракта, нагревают при температуре 100°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. Для полученного образца температура полной конверсии СО/CO2 в первом цикле составляет 280°С при содержании в активном слое 97% оксида европия, 1% платины и 2% оксида висмута.

В последующих циклах испытания образца, полученного согласно примеру 1, осыпания активного слоя с оксида алюминия не наблюдается и температура конверсии не меняется.

Пример 2. Образец оксида алюминия (ТУ 2163-015-44912618-2003) пропитывают смешанным экстрактом, полученным согласно примеру 1, в течение 40 мин, отделяют от экстракта, нагревают для отгонки растворителя при температуре 90°С и прокаливают при температуре 820°С в течение 1 часа. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 280°С при содержании в активном слое 97% оксида европия, 1% платины и 2% оксида висмута. В последующих циклах испытания образца осыпания активного слоя с оксида алюминия не наблюдается и температура конверсии не меняется.

Пример 3. Органические экстракты церия (0,0071 моль/л), платины (0,0026 моль/л) и висмута (0,0048 моль/л) смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют аморфный диоксид кремния, который пропитывают смешанным экстрактом в течение 50 мин, отделяют от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 270°С при содержании в активном слое 97,4% оксида церия, 0,8% платины и 1,8% оксида висмута. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 4. Органические экстракты церия 0,0071 моль/л, палладия 0,0047 моль/л и висмута 0,0048 моль/л смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют аморфный диоксид кремния, который пропитывают смешанным экстрактом в течение 40 мин, отделяют от экстракта, нагревают при температуре 70°С для отгонки растворителя и прокаливают при температуре 840°С в течение 2 часов. После прокаливания в активном слое содержалось 97,4% оксида церия, 0,8% оксида палладия и 1,8% оксида висмута. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 285°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 5. Органические экстракты церия (0,0071 моль/л), платины (0,0026 моль/л), палладия (0,0047 моль/л) и висмута (0,0048 моль/л) смешивают в объемном соотношении соответственно 100:2:1:2 и пропитывают образец гранулированного оксида алюминия (ТУ 2163-015-44912618-2003) в течение 40 мин, отделяют образец от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. После прокаливания в активном слое содержалось 96% оксида церия, 1% оксида палладия, 1% платины и 2% оксида висмута. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 6. Органические экстракты европия (0,0066 моль/л), церия 0,0071 моль/л, платины 0,0026 моль/л и висмута (0,0048 моль/л) смешивают в объемном соотношении соответственно 50:50:2:2 и пропитывают образец аморфного диоксида кремния в течение 50 мин, затем образец отделяют от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 850°С в течение 2 часов. После прокаливания в активном слое содержалось 48,7% оксида церия, 2% оксида висмута, 48,3% оксида европия и 1% платины. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 7. Органические экстракты европия (0,0066 моль/л), церия 0,0071 моль/л, платины 0,0026 моль/л и висмута (0,0048 моль/л) смешивают в объемном соотношении 50:50:2:2 (как в примере 6), пропитывают образец оксида алюминия в течение 1 часа, отделяют образец от экстракта, нагревают при температуре 90°С для отгонки растворителя и прокаливают при температуре 750°С в течение 2 часов. После прокаливания в активном слое содержалось 48,7% оксида церия, 2% оксида висмута, 48,3% оксида европия и 1% платины. Для полученного образца температура полной конверсии CO/CO2 в первом цикле 280°С, а уже при повторном использовании из-за осыпания активного слоя не достигается даже при температуре 400°С.

Пример 8. Органические экстракты, содержащие 0,0066 моль/л европия, 0,0071 моль/л церия, 0,0026 моль/л платины, 0,0047 моль/л палладия и 0,0048 моль/л висмута, смешивают в объемном соотношении соответственно 50:50:2:2:2, пропитывают образец оксида алюминия в течение 1 часа с последующими отгонкой растворителя при температуре 100°С и прокаливанием при температуре 860°С в течение 2 часов. После прокаливания в активном слое содержалось 48% оксида европия, 48,5% оксида церия, 0,85% оксида палладия, 0,85% платины, 1,8% оксида висмута. Для полученного образца температура полной конверсии СО/СО2 в первом цикле испытаний составляет 290°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 9. Органические экстракты, содержащие 0,0066 моль/л европия, 0,0026 моль/л платины, 0,0047 моль/л палладия и 0,0048 моль/л висмута смешивают в объемном соотношении 100:2:1:2 и пропитывают образец оксида алюминия в течение 45 мин с последующими отгонкой растворителя при температуре 70°С и прокаливанием при температуре 830°С в течение 2 часов. После прокаливания в активном слое содержалось 96% оксида европия, 1% платины, 1% оксида палладия и 2% оксида висмута. Для полученного образца температура полной конверсии СО/СО2 в первом цикле испытаний составляет 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 125.
10.04.2013
№216.012.338b

Способ получения магнитоактивных покрытий на титане и его сплавах

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной...
Тип: Изобретение
Номер охранного документа: 0002478738
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.36b7

Способ получения борфторсодержащей энергоемкой композиции

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив. Сначала к водному гелю,...
Тип: Изобретение
Номер охранного документа: 0002479560
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.4890

Способ переработки медьсодержащих шламов гальванических производств

Изобретение относится к способам переработки техногенных отходов с извлечением тяжелых металлов и может найти применение при утилизации медьсодержащих шламов гальванических производств для получения товарного продукта в виде бронзы, а также шлаков, пригодных для использования в производстве...
Тип: Изобретение
Номер охранного документа: 0002484156
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.5457

Способ консервации археологических находок из железа и его сплавов

Изобретение относится к области консервации металлических изделий, в частности археологических находок из железа и его сплавов, и может быть использовано в археологии и музейном деле. Способ включает очистку археологического объекта, его гидротермальную обработку в разбавленном щелочном...
Тип: Изобретение
Номер охранного документа: 0002487194
Дата охранного документа: 10.07.2013
20.12.2013
№216.012.8d24

Способ получения нанодисперсного фторопласта

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей. Способ...
Тип: Изобретение
Номер охранного документа: 0002501815
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.906f

Способ получения углеродного наноматериала и углеродный наноматериал

Изобретение может быть использовано в производстве катализаторов, электродов, токопроводящих элементов, фильтров. Твердый политетрафторэтилен (ПТФЭ) подвергают пиролизу без доступа воздуха в плазме импульсного высоковольтного электрического разряда при атмосферном давлении с амплитудой...
Тип: Изобретение
Номер охранного документа: 0002502668
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a25e

Способ обработки смеси оксидов ниобия и/или тантала и титана

Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В...
Тип: Изобретение
Номер охранного документа: 0002507281
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5b1

Способ получения кальций-фосфатных стеклокерамических материалов

Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для...
Тип: Изобретение
Номер охранного документа: 0002508132
Дата охранного документа: 27.02.2014
10.06.2014
№216.012.cd06

Способ формирования покрытий пентаоксида тантала на подложке

Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ...
Тип: Изобретение
Номер охранного документа: 0002518257
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d447

Способ получения оптически активной стеклокерамики на основе фторидных стекол, допированных соединениями рзэ

Изобретение относится к области получения оптически активной стеклокерамики на основе фторидных стекол и может быть использовано на предприятиях стекольной и оптической промышленности для получения материалов, проводящих лазерное излучение. Способ включает введение нанопорошка фторида...
Тип: Изобретение
Номер охранного документа: 0002520114
Дата охранного документа: 20.06.2014
Показаны записи 1-10 из 47.
27.05.2013
№216.012.449f

Способ получения композитных полимер-оксидных покрытий на вентильных металлах и их сплавах

Изобретение относится к области электрохимической обработки поверхности изделий из вентильных металлов и их сплавов и может быть использовано в машиностроении и других отраслях промышленности для получения гидрофобных покрытий, обладающих высокой износостойкостью, а также антифрикционными...
Тип: Изобретение
Номер охранного документа: 0002483144
Дата охранного документа: 27.05.2013
27.09.2013
№216.012.7037

Способ определения золота в рудах и продуктах их переработки

Изобретение относится к способам химического анализа и может быть использовано для определения содержания золота в рудах различного минералогического типа и продуктах их технологической переработки (хвостах, концентратах). Сущность: перед проведением нейтронно-активационного анализа...
Тип: Изобретение
Номер охранного документа: 0002494378
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.883c

Система для управления работой сортировочных станций направления железнодорожной сети

Изобретение относится к железнодорожному транспорту, преимущественно к системам для управления работой транспортных объектов. Система для управления работой сортировочных станций направления содержит автоматизированное рабочее место работника дирекции, включающее процессор, блок ввода/вывода,...
Тип: Изобретение
Номер охранного документа: 0002500558
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8841

Система для оперативного управления поездной работой направления железнодорожной сети

Изобретение относится к системам оперативного управления работой транспортных объектов на железнодорожном транспорте. Система для оперативного управления поездной работой направления железнодорожной сети содержит процессор с блоком ввода/вывода и монитором, блок памяти, первый блок анализа и...
Тип: Изобретение
Номер охранного документа: 0002500563
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8cae

Автоматизированная система для управления поездной работой направления железнодорожной сети в условиях проведения ремонтных работ

Изобретение относится к железнодорожном транспорту и может быть использовано для управления поездной работой в условиях проведения ремонтных работ. Автоматизированная система для управления поездной работой направления железнодорожной сети в условиях проведения ремонтных работ содержит...
Тип: Изобретение
Номер охранного документа: 0002501697
Дата охранного документа: 20.12.2013
20.02.2014
№216.012.a25e

Способ обработки смеси оксидов ниобия и/или тантала и титана

Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В...
Тип: Изобретение
Номер охранного документа: 0002507281
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5b1

Способ получения кальций-фосфатных стеклокерамических материалов

Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для...
Тип: Изобретение
Номер охранного документа: 0002508132
Дата охранного документа: 27.02.2014
10.06.2014
№216.012.cd06

Способ формирования покрытий пентаоксида тантала на подложке

Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ...
Тип: Изобретение
Номер охранного документа: 0002518257
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.eaf6

Способ формирования покрытия пентаоксида тантала на подложке из титана или его сплавов

Изобретение относится к получению оксидных покрытий тантала на подложке из титана и его сплавов и может быть использовано для формирования покрытий пентаоксида тантала для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными, оптическими характеристиками,...
Тип: Изобретение
Номер охранного документа: 0002525958
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f3fe

Способ антикоррозионной обработки сплавов алюминия

Изобретение относится к способам защиты металлов от коррозии и предназначено для повышения коррозионной стойкости покрытий на сплавах алюминия, используемых в агрессивной хлоридсодержащей среде. Способ включает нанесение покрытия методом плазменно-электролитического оксидирования в биполярном...
Тип: Изобретение
Номер охранного документа: 0002528285
Дата охранного документа: 10.09.2014
+ добавить свой РИД