×
29.11.2019
219.017.e79c

ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМЫЙ ПОЛЯРИЗАТОР СВЕТА НА ОСНОВЕ АНИЗОТРОПИИ СВЕТОРАССЕЯНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Электрически управляемый поляризатор света на основе анизотропии светорассеяния, обладающий высокими светопропусканием и поляризующей способностью, относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах и предназначенным для управления поляризацией и интенсивностью проходящего света с использованием электрического поля. Поляризатор состоит из двух параллельно расположенных прозрачных пластин, по крайней мере на одной из которых сформированы электроды, задающие направление электрического поля вдоль пластины, и расположенной между пластинами и электродами полимерной пленки с капсулированными в ней каплями нематического жидкого кристалла, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n. Используемая композиция обеспечивает коническое сцепление нематического жидкого кристалла с полимером, в результате чего директор ориентируется под углом 40° к нормали на межфазной границе полимер-ЖК, а в каплях нематического жидкого кристалла образуется аксиально-биполярное упорядочение директора. Техническим результатом изобретения является создание электрически управляемого поляризатора света на основе композитной полимерно-жидкокристаллической пленки с коническим поверхностным сцеплением, обладающего высоким значением светопропускания T для прямо проходящей поляризованной компоненты света и большой величиной отношения T:T при воздействии электрического поля. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах (ЖК) и предназначенным для управления поляризацией и интенсивностью проходящего света с использованием электрического поля.

Известен пленочный поляризатор на основе анизотропии светорассеяния [Zyryanov V.Ya. и др. Elongated films of polymer dispersed liquid crystals as scattering polarizers. Molecular Engineering. 1992, v. 1, p. 305-310.], представляющий собой ориентированную одноосным растяжением пленку полимера с капсулированными в ней каплями нематического жидкого кристалла, имеющими вытянутую эллипсоидальную форму с длинной осью, параллельной направлению растяжения данной композитной пленки. Используемый полимер задает тангенциальное сцепление, при котором директор ЖК (преимущественное направление ориентации палочкообразных молекул ЖК) ориентируется параллельно поверхности полимера. Состав композитной пленки подбирают так, чтобы перпендикулярная компонента показателя преломления нематика n (значение показателя преломления для света, поляризованного перпендикулярно директору ЖК) была равна показателю преломления np полимерной матрицы (n=np), а величина двулучепреломления ЖК (Δn=n||-n) была максимальной. Здесь значками || и ⊥ отмечается поляризация света параллельно или перпендикулярно директору ЖК, соответственно. В этом случае свет, поляризованный параллельно направлению растяжения пленки, интенсивно рассеивается вследствие большого градиента показателя преломления (n||-np) на границе раздела полимер-ЖК. Перпендикулярно поляризованная компонента света проходит, не испытывая сильного рассеяния, если выполняется соотношение n=np. Такой поляризатор света на основе анизотропии светорассеяния может обладать достаточно большим значением отношения поляризованных компонент светопропускания (контраста) T|| и большой величиной светопропускания T прямо проходящего излучения. Например, при растяжении композитной пленки в 1.5 раза достигается T||=420:1 при T=0.5. Здесь T и Т|| обозначают компоненты светопропускания нормально падающего на пленочный поляризатор света, поляризованного, соответственно, перпендикулярно или параллельно направлению растяжения композитной пленки. При этом величины светопропускания T⊥,|| определяется отношением интенсивности Iпр,⊥,|| света, прошедшего через пленку, к интенсивностям I⊥,|| падающего света, поляризованного, соответственно, перпендикулярно или параллельно направлению растяжения композитной пленки T⊥,||=Iпр,⊥,||/I⊥,||. Пленочные поляризаторы на основе анизотропии светорассеяния, представляющие собой пленку полимера с капсулированными в ней каплями жидкого кристалла, характеризуются механической прочностью, гибкостью, простой и недорогой технологией изготовления.

Наиболее близким по совокупности существенных признаков аналогом является устройство для электрически управляемой поляризации света [V. Presnyakov, S. Smorgon, V. Zyryanov, V. Shabanov. Volt-contrast curve anisotropy in planar-oriented PDChLC films // Mol. Cryst. Liq. Cryst. 1998. V. 321. P. 259[703]-270[714];], содержащее две параллельно расположенные стеклянные подложки с прозрачными электродами на внутренних сторонах, между которыми расположена одноосно растянутая пленка полимера с капсулированными в ней каплями хирально-нематического (холестерического) жидкого кристалла, имеющими вытянутую эллипсоидальную форму с длинной осью, параллельной направлению растяжения данной композитной пленки. Используемый полимер задает тангенциальное сцепление для выбранного жидкого кристалла, в каплях которого образуется закрученное упорядочение директора с осью спирали перпендикулярной поверхности капли. Состав композитной пленки подбирался так, чтобы перпендикулярная компонента показателя преломления жидкого кристалла n была близка показателю преломления np полимерной матрицы (n=np). Композитная пленка в исходном состоянии интенсивно рассеивает нормально падающий на нее свет любой поляризации, а под действием направленного перпендикулярно к пленке электрического поля величиной около 70 В при толщине пленки 45 мкм (т.е., при напряженности поля около E=1.5 В/мкм) переходит в частично прозрачное состояние со светопропусканием T=0.37 для света, поляризованного перпендикулярно направлению растяжения пленки. При этом достигается значение T||=74:1 отношения перпендикулярной компоненты светопропускания к параллельной компоненте.

Недостатками известного устройства являются низкое значение светопропускания T для прямо проходящей поляризованной компоненты света и малая величина отношения T||, достигаемые при воздействии электрического поля.

Техническим результатом изобретения является создание электрически управляемого поляризатора света на основе композитной полимерно-жидкокристаллической пленки с коническим поверхностным сцеплением, обладающего высоким значением светопропускания T для прямо проходящей поляризованной компоненты света и большой величиной отношения T|| при воздействии электрического поля.

Указанный технический результат достигается тем, что в электрическом управляемом поляризаторе света на основе анизотропии светорассеяния, состоящем из двух параллельно расположенных прозрачных пластин, по крайней мере на одной из которых сформированы электроды, задающие направление электрического поля вдоль пластины, и расположенной между пластинами и электродами полимерной пленки с капсулированными в ней каплями нематического жидкого кристалла, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=np, новым является то, что для указанной композиции выбраны компоненты, обеспечивающие коническое сцепление нематического жидкого кристалла с полимером, в результате чего директор ориентируется под углом 40° к нормали на межфазной границе полимер-ЖК, а в каплях нематического жидкого кристалла образуется аксиально-биполярное упорядочение директора.

Отличия заявляемого электрически управляемого поляризатора света от прототипа заключаются в том, что для композиции «полимер - жидкий кристалл» выбраны компоненты, обеспечивающие коническое сцепление нематического жидкого кристалла с полимером, в результате чего директор ориентируется под углом 40° к нормали на межфазной границе полимер-ЖК, а в каплях нематического жидкого кристалла образуется аксиально-биполярное упорядочение директора.

Эти признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

При изучении других известных технических решений в данной области техники, признаки, отличающие заявляемое изобретение от прототипа, не выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежом, на котором схематически изображено поперечное сечение заявляемого электрически управляемого поляризатора света (фиг. 1).

Заявляемый электрически управляемый поляризатор света содержит полимерную пленку 1 с капсулированными в ней каплями нематического жидкого кристалла 2, имеющими форму сплюснутого в плоскости пленки эллипсоида, в которых реализуется аксиал-биполярная конфигурация директора. В качестве полимера использован полиизобутил метакрилат (ПиБМА) (www.sigmaaldrich.com). В качестве жидкого кристалла использована нематическая смесь ЛН-396 [M.N. Krakhalev, О.О. Prishchepa, V.S. Sutormin, V.Ya. Zyryanov. Director configurations in nematic droplets with tilted surface anchoring // Liq. Cryst. 2017. V. 44. P. 355-363], для которой на границе с ПиБМА реализуется коническое сцепление, в результате чего директор ориентируется под углом 40° к нормали на межфазной границе полимер-ЖК. При этом перпендикулярная компонента показателя преломления нематической смеси ЛН-396 n примерно равна показателю преломления np полимерной матрицы (n=np). Композитная пленка расположена между двумя прозрачными пластинами 3, в качестве которых могут быть использованы стеклянные подложки или гибкие полимерные пленки, изготовленные, например, из полиэтилентерефталата. Толщина композитной пленки задается спейсерами 4. На одной из пластин (на фиг. 1 - нижней) нанесены два электрода 5 в виде параллельно расположенных полосок, поперечное сечение которых показано на фиг. 1.

Функционирует заявляемый электрически управляемый поляризатор света следующим образом. В отсутствие внешнего электрического поля (фиг. 1а) композитная пленка рассеивает нормально падающий на нее свет любой поляризации вследствие случайной ориентации биполярных осей 6 в ЖК каплях 2 с аксиал-биполярной конфигурацией директора. При подаче на электроды 5 электрического сигнала происходит ориентация биполярных осей 6 капель нематика 2 вдоль электрического поля Е, направленного вдоль пластин (фиг. 1б). В этом случае нормально падающий свет 7, поляризованный вдоль приложенного электрического поля интенсивно рассеивается, а свет 8, поляризованный перпендикулярно электрическому полю, проходит через композитную пленку, не испытывая сильного рассеяния вследствие близости перпендикулярной компоненты показателя преломления ЖК n и показателя преломления полимерной матрицы np. В результате, при падении на устройство неполяризованного излучения на выходе из него свет становится поляризованным перпендикулярно направлению приложенного электрического поля.

Примеры:

В качестве 1-го примера был изготовлен электрически управляемый поляризатор света на основе анизотропии светорассеяния с применением следующих операций:

1. На стеклянной пластине, покрытой двумя прозрачными ITO электродами, разделенными расстоянием 650 мкм друг от друга, располагалась композитная пленка, изготовленная методом фазового разделения при испарении растворителя, на основе полимера ПиБМА и нематической смеси ЛН-396. Весовое соотношение ПиБМА и ЛН-396 составляло 40:60, соответственно.

2. На части пластины непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 20 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной, и полученная ячейка помещалась под пресс.

4. Пресс с расположенной в нем вышеописанной ячейкой нагревался до 70°С и выдерживался при этой температуре в течение 30 минут, а затем охлаждался до комнатной температуры. В результате формировался электрически управляемый поляризатор света на основе анизотропии светорассеяния, изображенный на фиг. 1.

Для такого поляризатора при воздействии электрического поля напряженностью около 0.34 В/мкм неполяризованный свет после прохождения композитной пленки становится линейно-поляризованным в направлении перпендикулярном приложенному электрическому полю. При этом значение отношения поляризованных компонент светопропускания T|| составляет 81:1, а величина светопропускания прямо проходящего излучения T=0.7.

В качестве 2-го примера был изготовлен электрически управляемый поляризатор света на основе анизотропии светорассеяния с применением следующих операций:

1. На одной стеклянной пластине, покрытой двумя прозрачными ITO электродами, разделенными расстоянием 650 мкм друг от друга, располагалась композитная пленка, изготовленная методом фазового разделения при испарении растворителя, на основе полимера ПиБМА и нематической смеси ЛН-396. Весовое соотношение ПиБМА и ЛН-396 составляло 40:60, соответственно.

2. На части пластины непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 15 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались второй стеклянной пластиной с двумя прозрачными ITO электродами, разделенными расстоянием 650 мкм друг от друга и расположенными напротив электродов первой пластины (Фиг. 2), после чего полученная ячейка помещалась под пресс.

4. Пресс с расположенной в нем вышеописанной ячейкой нагревался до 70°С и выдерживался при этой температуре в течение 30 минут, а затем охлаждался до комнатной температуры. В результате формировался электрически управляемый поляризатор света на основе анизотропии светорассеяния, изображенный на фиг. 2., где элементы конструкции имеют такие же обозначения, как и на фиг. 1.

Для такого поляризатора при воздействии электрического поля напряженностью около 0.34 В/мкм неполяризованный свет после прохождения композитной пленки становится линейно-поляризованным в направлении перпендикулярном приложенному электрическому полю. При этом значение отношения поляризованных компонент светопропускания T|| составляет 590:1, а величина светопропускания прямо проходящего излучения T=0.89.

В качестве 3-го примера был изготовлен электрически управляемый поляризатор света на основе анизотропии светорассеяния с применением следующих операций:

1. На одной стеклянной пластине, покрытой двумя прозрачными ITO электродами, разделенными расстоянием 650 мкм друг от друга, располагалась композитная пленка, изготовленная методом фазового разделения при испарении растворителя, на основе полимера ПиБМА и нематической смеси ЛН-396. Весовое соотношение ПиБМА и ЛН-396 составляло 40:60, соответственно.

2. На части пластины непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 25 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались второй стеклянной пластиной с двумя прозрачными ITO электродами, разделенными расстоянием 650 мкм друг от друга и расположенными напротив электродов первой пластины, после чего полученная ячейка помещалась под пресс.

4. Пресс с расположенной в нем вышеописанной ячейкой нагревался до 70°С и выдерживался при этой температуре в течение 30 минут, а затем охлаждался до комнатной температуры. В результате формировался электрически управляемый поляризатор света на основе анизотропии светорассеяния, конструкция которого соответствует фиг. 2.

Для такого поляризатора при воздействии электрического поля напряженностью около 0.34 В/мкм неполяризованный свет после прохождения композитной пленки становится линейно-поляризованным в направлении перпендикулярном приложенному электрическому полю. При этом значение отношения поляризованных компонент светопропускания T|| составляет 2580:1, а величина светопропускания прямо проходящего излучения T=0.62.

Исследования полученных экспериментальных образцов показали, что заявляемый электрически управляемый поляризатор света по совокупности физико-технических характеристик не уступает прототипу. В то же время были достигнуты одновременно более высокие значения светопропускания T для прямо проходящей поляризованной компоненты света и отношения T|| при воздействии электрического поля. Так, для устройства, описанного во 2-м примере, под действием электрического поля было достигнуто увеличение отношения поляризованных компонент светопропускания T|| в 8 раз, а значение компоненты светопропускания T увеличено в 2.4 раза в сравнении с прототипом.

Предлагаемый электрически управляемый поляризатор света на основе анизотропии светорассеяния может использоваться в таких оптоэлектронных приборах и устройствах, где необходимо иметь компактный, дешевый, простой в изготовлении и надежный в эксплуатации элемент управления поляризацией проходящего высокоинтенсивного оптического излучения. Такие поляризаторы света перспективны для применения в проекционных устройствах, светотехнике, лазерных системах.

Электрически управляемый поляризатор света на основе анизотропии светорассеяния, состоящий из двух параллельно расположенных прозрачных пластин, по крайней мере на одной из которых сформированы электроды, задающие направление электрического поля вдоль пластины, и расположенной между пластинами и электродами полимерной пленки с капсулированными в ней каплями нематического жидкого кристалла, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n, отличающийся тем, что для указанной композиции выбраны компоненты, обеспечивающие коническое сцепление нематического жидкого кристалла с полимером, в результате чего директор ориентируется под углом 40° к нормали на межфазной границе полимер-ЖК, а в каплях нематического жидкого кристалла образуется аксиально-биполярное упорядочение директора.
ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМЫЙ ПОЛЯРИЗАТОР СВЕТА НА ОСНОВЕ АНИЗОТРОПИИ СВЕТОРАССЕЯНИЯ
ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМЫЙ ПОЛЯРИЗАТОР СВЕТА НА ОСНОВЕ АНИЗОТРОПИИ СВЕТОРАССЕЯНИЯ
ЭЛЕКТРИЧЕСКИ УПРАВЛЯЕМЫЙ ПОЛЯРИЗАТОР СВЕТА НА ОСНОВЕ АНИЗОТРОПИИ СВЕТОРАССЕЯНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 55.
25.08.2017
№217.015.a94d

Способ создания противопожарных заградительных барьеров вокруг населенных пунктов от степных пожаров

Изобретение относится к области противопожарной защиты населенных пунктов от степных пожаров путем создания противопожарных заградительных барьеров по их внешнему периметру. Способ включает создание противопожарных заградительных барьеров, по внешнему периметру населенных пунктов создаются...
Тип: Изобретение
Номер охранного документа: 0002611877
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.b277

Способ определения напряжённости намагничивающего поля в магнитометрах со сверхпроводящим соленоидом

Изобретение относится к магнитоизмерительной технике и может быть использовано при исследовании магнитных свойств веществ и материалов в областях физики магнитных явлений, геофизики. Способ определения напряженности намагничивающего поля в магнитометрах со сверхпроводящим соленоидом, включающий...
Тип: Изобретение
Номер охранного документа: 0002613588
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.bfea

Способ флотационного обогащения глинистого золотосодержащего сырья

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению золота из окисленного глинистого сырья, и может быть использовано при флотационном обогащении золота из окисленных золотоносных руд коры выветривания и техногенного сырья, содержащих...
Тип: Изобретение
Номер охранного документа: 0002616646
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c0dc

Способ определения количества и характера пространственного распределения твердых атмосферных осадков

Изобретение относится к области гидрометеорологического моделирования и может быть использовано для создания картосхем распределения твердых атмосферных осадков. Сущность: на основании гравиметрических данных спутниковых измерений GRACE (Gravity Recovery and Climate Experiment) получают...
Тип: Изобретение
Номер охранного документа: 0002617452
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c82a

Многослойный полосно-пропускающий фильтр

Многослойный полосно-пропускающий фильтр содержит параллельные слои диэлектрика резонансной толщины, каждый из которых отделен один от другого и от окружающего пространства плоской решеткой параллельных тонкопленочных полосковых проводников с упорядоченными осями. При этом оси любых двух...
Тип: Изобретение
Номер охранного документа: 0002619137
Дата охранного документа: 12.05.2017
26.08.2017
№217.015.e408

Широкополосный полосковый фильтр

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Фильтр, содержащий диэлектрическую подложку, на одну сторону которой нанесены короткозамкнутые с одного конца полосковые проводники, а на вторую сторону нанесены короткозамкнутые с...
Тип: Изобретение
Номер охранного документа: 0002626224
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.f032

Способ получения силицидов титана

Изобретение относится к области химической технологии неорганических веществ и может быть использовано, в частности, для синтеза тугоплавких соединений. Способ получения силицидов титана включает смешение газообразных галогенидов титана и кремния, взятых в мольном отношении от 5:3 до 1:2 при...
Тип: Изобретение
Номер охранного документа: 0002629121
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.0309

Способ получения аморфных пленок со-р на диэлектрической подложке

Изобретение относится к области химического осаждения магнитомягких и магнитожестких пленок состава кобальт-фосфор, применяющихся в качестве сред для магнитной и термомагнитной записи, для создания микроэлектромагнитных механических устройств (MEMS), а также в датчиках слабых магнитных полей, в...
Тип: Изобретение
Номер охранного документа: 0002630162
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1d86

Полосковый резонатор

Изобретение относится к технике высоких и сверхвысоких частот и предназначено для создания частотно-селективных устройств. Полосковый резонатор содержит две диэлектрические подложки, подвешенные между экранами корпуса, на обе поверхности которых нанесены полосковые металлические проводники,...
Тип: Изобретение
Номер охранного документа: 0002640968
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.2082

Способ получения суспензии на полимерной основе с высокодисперсными металлическими частицами для изготовления полимерных матриц, наполненных упомянутыми частицами

Изобретение относится к способам введения частиц в вещество и может быть использовано для получения суспензий частиц, содержащих наполнители контролируемого размера, в том числе для введения частиц контролируемого размера от наночастиц до атомарных в матрицу термопластических и сетчатых...
Тип: Изобретение
Номер охранного документа: 0002641591
Дата охранного документа: 18.01.2018
Показаны записи 1-3 из 3.
10.12.2015
№216.013.973d

Светополяризующий элемент на основе анизотропии рассеяния

Изобретение относится к оптической технике и предназначено для получения линейно поляризованного света. Светополяризующий элемент на основе анизотропии рассеяния содержит ориентированную одноосным растяжением полимерную пленку, обладающую тангенциальным сцеплением, с капсулированными в ней...
Тип: Изобретение
Номер охранного документа: 0002570337
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.83e2

Электрооптический жидкокристаллический элемент

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам на основе жидких кристаллов (ЖК), предназначенным для управления интенсивностью проходящего света. Элемент представляет собой два скрещенных поляризатора, между которыми расположена жидкокристаллическая...
Тип: Изобретение
Номер охранного документа: 0002601616
Дата охранного документа: 10.11.2016
12.04.2023
№223.018.4964

Электрооптический жидкокристаллический элемент с низким управляющим напряжением и высоким контрастом

Изобретение относится к оптоэлектронной технике и предназначено для управления интенсивностью проходящего света с использованием электрического поля. Электрооптический элемент состоит из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах и расположенной...
Тип: Изобретение
Номер охранного документа: 0002736815
Дата охранного документа: 20.11.2020
+ добавить свой РИД