×
12.04.2023
223.018.4964

Результат интеллектуальной деятельности: ЭЛЕКТРООПТИЧЕСКИЙ ЖИДКОКРИСТАЛЛИЧЕСКИЙ ЭЛЕМЕНТ С НИЗКИМ УПРАВЛЯЮЩИМ НАПРЯЖЕНИЕМ И ВЫСОКИМ КОНТРАСТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптоэлектронной технике и предназначено для управления интенсивностью проходящего света с использованием электрического поля. Электрооптический элемент состоит из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического жидкого кристалла. Компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n. Используемая композиция обеспечивает коническое поверхностное сцепление с углом наклона директора в интервале от 30 до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура. Техническим результатом является создание электрически управляемого элемента, обладающего низким управляющим напряжением и высоким контрастом. 1 ил.

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах (ЖК) и предназначенным для управления интенсивностью проходящего света с использованием электрического поля.

Известны электрооптические элементы на основе светорассеяния [Drzaic P.S. Liquid crystal dispersions. - Singapore: World Scientific, 1995. - 448 p.], состоящие из двух подложек с электродами, между которыми располагается полимерная пленка с капсулированными в ней каплями нематического жидкого кристалла, имеющими биполярную ориентационную структуру вследствие тангенциального (планарного) сцепления палочкообразных молекул ЖК с поверхностью полимера. Полимер и ЖК подбираются таким образом, чтобы перпендикулярная компонента показателя преломления ЖК n была близка к показателю преломления np полимера (n=np), а величина двулучепреломления ЖК (Δn=n|| - n) была максимальной. Здесь значками || и 1 отмечается поляризация света параллельно и перпендикулярно директору ЖК (преимущественному направлению ориентации палочкообразных молекул ЖК), соответственно. В исходном состоянии биполярные оси в каплях ЖК ориентированы произвольно в плоскости композитной пленки. Управление интенсивностью света, прошедшего через композитную пленку, осуществляется путем приложения электрического поля перпендикулярно подложкам, которое вызывает переориентацию директора в каплях ЖК вдоль поля, если диэлектрическая анизотропия ЖК положительна. В отсутствие электрического поля пленка сильно рассеивает ортогонально падающий на элемент свет вследствие большого градиента показателя преломления (n|| - n) на межфазной границе между полимерной матрицей и жидким кристаллом. Под действием электрического поля композитная пленка переходит в практически прозрачное состояние (состояние с малым светорассеянием), поскольку градиент показателя преломления на границе полимер-ЖК становится минимальным, так как n=np. Основными характеристиками таких электрооптических элементов являются пороговое напряжение Vth, напряжение насыщения Vsat и коэффициент контрастности CR. Пороговым напряжением Vth и напряжением насыщения Vsat обычно считают значения прикладываемого напряжения, необходимые для достижения 10% и 90% от разности между максимальной и минимальной величиной светопропускания, соответственно. Величина светопропускания T, в свою очередь, определяются отношением интенсивности I света, прошедшего через ячейку, к интенсивности I0 падающего света: T=(I/I0)⋅100%. Коэффициентом контрастности CR является отношение максимального светопропускания ячейки Tmax к минимальному светопропусканию Tmin:CR=Tmax/Tmin.

Наиболее близким по совокупности существенных признаков аналогом является элемент с электрически управляемым светопропусканием [Liu F., Сао Н., Мао Q., Song Р., Yang Н. Effects of monomer structure on the morphology of polymer networks and the electro-optical properties of polymer-dispersed liquid crystal films // Liq. Cryst. - 2012. - Vol. 39, No. 12. P. 419-424], содержащий две стеклянные подложки с прозрачными электродами на внутренних сторонах, между которыми расположен капсулированный полимером жидкий кристалл (polymer dispersed liquid crystal). Капсулированный полимером жидкий кристалл представляет собой полимерную пленку толщиной 20 мкм с капсулированными в ней каплями нематического жидкого кристалла с биполярной ориентационной структурой. Композитная пленка в исходном состоянии интенсивно рассеивает падающий на нее свет и светопропускание составляет 0.44%. При подаче переменного напряжения пленка переходит в прозрачное состояние с максимальным светопропусканием Tmax=80%. При этом величина порогового напряжения составляет 9.0 В, напряжение насыщения Vsat=28.6 В, а коэффициент контрастности CR=180.

Недостатками известного устройства являются малое значение коэффициента контрастности и достаточно большие значения порогового напряжения и напряжения насыщения.

Техническим результатом изобретения является создание элемента с электрически управляемым светопропусканием на основе пленки капсулированного полимером жидкого кристалла с коническим поверхностным (межфазным) сцеплением, обладающего высоким значением коэффициента контрастности и низкими значениями порогового напряжения и напряжения насыщения.

Указанный технический результат достигается тем, что в электрооптической композитной ячейке, состоящей из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах, задающими направление электрического поля перпендикулярно пластинам, и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического ЖК, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=np, новым является то, что используемые компоненты обеспечивают коническое поверхностное сцепление с углом наклона директора в интервале от 30° до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.

Отличия заявляемого электрооптического элемента от прототипа заключаются в том, что для композиции «полимер - жидкий кристалл» компоненты подобраны таким образом, что обеспечивается коническое поверхностное сцепление с углом наклона директора в интервале от 30° до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.

Эти признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

При изучении других известных технических решений в данной области техники, признаки, отличающие заявляемое изобретение от прототипа, не выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежом, на котором схематически изображено поперечное сечение заявляемого электрооптического элемента (фиг. 1).

Заявляемая электрооптическая ячейка содержит две параллельно расположенные пластины 1 с прозрачными электродами 2 на внутренних сторонах, между которыми расположена полимерная пленка 3 с капсулированными в ней каплями нематического жидкого кристалла 4, в которых формируется аксиал-биполярная ориентационная структура. В качестве пластин 1 могут быть использованы стеклянные подложки или гибкие полимерные пленки, изготовленные, например, из полиэтилентерефталата. Толщина полимерной пленки, содержащей капли жидкого кристалла, задается спейсерами 5. В качестве полимера использован полиизобутил метакрилат (ПиБМА) (www.sigmaaldrich.com). В качестве жидкого кристалла использована нематическая смесь ЛН-396 [Krakhalev M.N., Prishchepa О.О., Sutormin V.S., Zyryanov V.Ya. Director configurations in nematic droplets with tilted surface anchoring // Liq. Cry St. - 2017. - Vol. 47, No. 2. P. 355-363], для которой на границе с ПиБМА реализуется коническое сцепление с углом наклона директора в интервале от 30° до 50° к нормали на межфазной границе полимер-ЖК. При этом перпендикулярная компонента показателя преломления нематической смеси ЛН-396 n примерно равна показателю преломления np полимерной матрицы (n=np).

Заявляемый электрооптический элемент функционирует следующим образом. В отсутствие внешнего электрического поля (фиг. 1а) композитная пленка рассеивает ортогонально падающий на нее свет вследствие произвольной ориентации биполярных осей 6 в каплях жидкого кристалла 4 с аксиал-биполярной ориентационной структурой. При подаче на электроды 2 электрического сигнала биполярные оси 6 капель нематического жидкого кристалла 4 ориентируются вдоль электрического поля Е, направленного перпендикулярно подложкам (фиг. 1б). Вследствие этого, для нормально падающего света показатель преломления ЖК становится близким к n, который, в свою очередь, примерно равен показателю преломления полимерной матрицы np, и свет проходит через композитную пленку практически не рассеиваясь. Примеры:

В качестве 1-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 40:60, соответственно, растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 20 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптический элемент, изображенный на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на него свет и светопропускание составляет Tmin=0.11%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=89.3%. При этом величина порогового напряжения Vth составляет 5.6 В, напряжение насыщения Vsat=9.8 В, а коэффициент контрастности CR=812.

В качестве 2-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 45:55, соответственно, растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 30 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптический элемент, изображенный на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на него свет и светопропускание составляет Tmin=0.32%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=81.0%. При этом величина порогового напряжения Vth составляет 8.6 В, напряжение насыщения Vsat=12.4 В, а коэффициент контрастности CR=253.

В качестве 3-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 40: 60 соответственно растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 30 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптическая ячейка, изображенная на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на нее свет и светопропускание составляет Tmin=0.02%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=84.7%. При этом величина порогового напряжения Vth составляет 8.0 В, напряжение насыщения Vsat=12.0 В, а коэффициент контрастности CR=4235.

Исследования полученных экспериментальных образцов показали, что заявляемый электрооптический элемент по совокупности физико-технических характеристик не уступает прототипу. В тоже время были получены более высокие значения коэффициента контрастности CR, и более низкие значения порогового напряжения и напряжения насыщения. Так, для устройства, описанного в Примере 3, где толщина композитной пленки составляла 30 мкм, было достигнуто увеличение CR примерно в 23.5 раза, а значения Vth, и Vsat были уменьшены в 1.1 и 2.4 раза, соответственно, в сравнении с прототипом. Даже для устройства, описанного в Примере 1, где толщина композитной пленки, как и в прототипе, составляла 20 мкм, было достигнуто увеличение CR примерно в 4.5 раза, а значения Vth и Vsat были уменьшены в 1.6 и 2.9 раза, соответственно, в сравнении с прототипом.

Предлагаемый электрооптический элемент может использоваться в приборах и устройствах, где необходимо иметь компактный, дешевый, простой в изготовлении и надежный в эксплуатации высококонтрастный элемент с низковольтным управлением интенсивностью прошедшего света.

Электрооптический жидкокристаллический элемент с низким управляющим напряжением и высоким контрастом, состоящий из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах, задающими направление электрического поля перпендикулярно пластинам, и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического жидкого кристалла, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n, отличающийся тем, что для используемой композиции компоненты выбраны таким образом, что обеспечивается коническое поверхностное сцепление с углом наклона директора в интервале от 30 до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 60.
25.08.2017
№217.015.ccfa

Широкополосная щелевая полосковая антенна гнсс

Изобретение относится к антенной технике. Особенностью заявленной широкополосной щелевой полосковой антенны ГНСС является то, что микрополосковая линия включает в себя две дуги, выполненные с разными радиусами относительно геометрического центра подложки, каждая дуга проходит под всеми щелевыми...
Тип: Изобретение
Номер охранного документа: 0002619846
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.dca7

Способ извлечения скандия из хлоридных растворов

Изобретение относится к гидрометаллургии редких металлов. Извлечение скандия из хлоридных растворов сорбцией проводят на твердом экстрагенте (ТВЭКС) на основе гранул полимера, пропитанного фосфорорганическим экстрагентом. В качестве ТВЭКС используют гранулы сшитого полистирола, пропитанного...
Тип: Изобретение
Номер охранного документа: 0002624314
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e8a7

Средство с антитромботической активностью

Изобретение относится к области химико-фармацевтической промышленности, а именно к антитромботическому средству, которое может быть эффективным для профилактики и лечения тромботических состояний. Антитромботическое средство на основе сульфатированного целлюлозного материала представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627435
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f6b5

Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека

Изобретение относится к области медицины. Предложен способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека, включающий инкубацию образца ткани рака легкого человека с дрожжевой РНК и инкубацию с растворами аптамеров, меченых различными...
Тип: Изобретение
Номер охранного документа: 0002639238
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fc7d

Способ получения дисукцината бетулинола

Изобретение относится к способу получения дисукцината бетулинола формулы: ацилированием бетулинола, в котором в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование проводят сплавлением бетулинола с янтарной кислотой при температуре 185-190°C в течение 20-25 минут...
Тип: Изобретение
Номер охранного документа: 0002638160
Дата охранного документа: 12.12.2017
19.01.2018
№218.016.0080

Способ получения органоминеральных удобрений на основе коры березы

Изобретение относится к сельскому хозяйству и может быть использовано для получения органоминеральных удобрений на основе коры березы. Способ включает получение пористой подложки из коры березы с последующей ее пропиткой раствором калийной соли до содержания 5,0-9,0 масс. % калия. Далее...
Тип: Изобретение
Номер охранного документа: 0002629264
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.015e

Способ получения дигидрокверцетина из древесины лиственницы сибирской

Изобретение относится к химико-фармацевтической промышленности и касается способа получения дигидрокверцетина, который является биологически активным средством. Способ получения дигидрокверцетина заключается в том, что древесину лиственницы, предварительно измельченную до частиц размером 1-3...
Тип: Изобретение
Номер охранного документа: 0002629770
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.07a2

Способ получения аргинин производного сульфата арабиногалактана

Изобретение относится к химико-фармацевтической промышленности. Способ получения аргинин производного сульфатированного арабиногалактана включает взаимодействие кислой формы сульфата арабиногалактана в растворе бутанола с аргинином, растворенным в 70%-ном этаноле, при рН 8 реакционного...
Тип: Изобретение
Номер охранного документа: 0002631470
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.07ab

Способ извлечения серебра из хлоридных растворов

Изобретение относится к гидрометаллургии серебра и может быть использовано при извлечении из хлоридных растворов при переработке растворов выщелачивания сульфидных цинковых и медных руд, концентратов, а также других промпродуктов цветной металлургии. Серебро извлекают из хлоридных растворов...
Тип: Изобретение
Номер охранного документа: 0002631440
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.0822

Способ получения ванилина окислением лигнинсодержащего древесного сырья

Настоящее изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической промышленности. Способ заключается в окислении лигнинсодержащего древесного сырья кислородом в щелочной среде при повышенной температуре и давлении в...
Тип: Изобретение
Номер охранного документа: 0002631508
Дата охранного документа: 25.09.2017
Показаны записи 1-3 из 3.
10.12.2015
№216.013.973d

Светополяризующий элемент на основе анизотропии рассеяния

Изобретение относится к оптической технике и предназначено для получения линейно поляризованного света. Светополяризующий элемент на основе анизотропии рассеяния содержит ориентированную одноосным растяжением полимерную пленку, обладающую тангенциальным сцеплением, с капсулированными в ней...
Тип: Изобретение
Номер охранного документа: 0002570337
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.83e2

Электрооптический жидкокристаллический элемент

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам на основе жидких кристаллов (ЖК), предназначенным для управления интенсивностью проходящего света. Элемент представляет собой два скрещенных поляризатора, между которыми расположена жидкокристаллическая...
Тип: Изобретение
Номер охранного документа: 0002601616
Дата охранного документа: 10.11.2016
29.11.2019
№219.017.e79c

Электрически управляемый поляризатор света на основе анизотропии светорассеяния

Электрически управляемый поляризатор света на основе анизотропии светорассеяния, обладающий высокими светопропусканием и поляризующей способностью, относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах и предназначенным для управления...
Тип: Изобретение
Номер охранного документа: 0002707424
Дата охранного документа: 26.11.2019
+ добавить свой РИД