×
23.08.2019
219.017.c258

Результат интеллектуальной деятельности: Способ измерения акустических пульсаций газового потока

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, а именно к способам измерения акустических пульсаций газового потока, преимущественно для исследования акустического шума авиационных газотурбинных двигателей, конкретно для исследования генерации акустического шума вентиляторами и/или компрессорами турбореактивных двухконтурных двигателей. В способе измерения пульсаций газового потока, в котором измеряют скорость газового потока, статическое и полное давление потока, осуществляют сбор и регистрацию данных, поступающих с датчиков измерения, производят обработку показаний датчиков, определяют (рассчитывают) значения числа Маха (М), проводят спектральный анализ измеренных данных, при этом дополнительно измеряют температуру Т торможения газового потока, а в качестве датчика пульсаций акустического давления и скорости потока используют термоанемометр, по определенному (рассчитанному) значению числа Маха (М) определяют значение газодинамической функции β, осуществляют тарировку датчика термоанемометра путем определения зависимости выходного сигнала термоанемометра в функции от массового расхода m и температуры Т торможения газового потока для разных величин относительного нагрева а, определяют отношение r коэффициентов чувствительности нити датчика термоанемометра к массовому расходу m и температуре Т торможения, также для числа М, соответствующего условиям аэродинамического эксперимента, определяют требуемое значение а, при котором выполняется условие равенства r=β; при этом для исключения влияния пульсаций газового потока, имеющих гидродинамическую природу, измерение акустического шума осуществляют при выбранном значении относительного нагрева а. Технический результат - повышение точности измерения уровня звукового давления и частотного спектра акустического шума авиационных газотурбинных двигателей за счет исключения влияния пульсаций газового потока, имеющих гидродинамическую природу, на показания измерительного оборудования с использованием дополнительных измерений и тарировочных графиков. 2 ил.

Изобретение относится к измерительной технике, а именно к способам измерения акустических пульсаций газового потока, преимущественно для исследования акустического шума авиационных газотурбинных двигателей, конкретно для исследования генерации акустического шума вентиляторами и (или) компрессорами турбореактивных двухконтурных двигателей.

Для исследования акустического шума современных авиационных газотурбинных двигателей обычно применяют акустическую аппаратуру, состоящую из прецизионного измерительного микрофона, усилителя, анализатора. Микрофон конденсаторного, пьезоэлектрического или электродинамического типа должен иметь требуемую равномерность частотной характеристики; анализатор должен обеспечивать октавный или третьоктавный анализ среднеквадратичных уровней звукового давления с заданной погрешностью измерения. Наибольшее распространение в мире для оценки акустического шума авиационной техники получило измерительное оборудование (микрофоны) компании «Брюль и Къер» (https://www.bksv.com/en/products/transducers/acoustic/microphones/microphe-preamplifier-combinations/4138-В-006, Дания).

Основными недостатками данного аналога являются:

- возможная потеря работоспособности микрофонов в случае их размещения в проточной части ГТД из-за воздействия предельных температур, вибраций, аэродинамических или звуковых нагрузок, например, при помпаже компрессора двигателя. Попытка разместить микрофон в защитный кожух может привести к искажению входного акустического сигнала;

- снижение точности измерения звукового давления в результате возникновения фонового шума вследствие генерации интенсивных вихревых структур при обтекании микрофона в случае его размещения непосредственно в газовый поток ГТД;

- повышение уровня генерируемого шума в случае размещения микрофона на входе в ГТД из-за воздействия интенсивных вихревых структур, возникающих при обтекании микрофона с рабочими лопатками вентилятора;

- высокая стоимость оборудования.

Известен способ измерения акустических характеристик газовых струй на выходе из реактивного сопла ГТД (Патент РФ 2531057, МПК G01H 15/00), в котором вышеуказанные недостатки частично устранены. В данном аналоге замеры акустических параметров потока проводят одновременно по всей плоскости среза осесимметричного или плоского сопла посредством аэроакустической антенны, представляющей собой дифракционную решетку специальной формы, состоящую из множества волоконно-оптических датчиков, которую устанавливают неподвижно в плоскости, перпендикулярно газовой струе, и соосно с ней; при этом увеличивают частоту замера по периферии за счет уменьшения шага решетки от центра к ее периферии. На основании анализа измеренных с помощью решетки сигналов судят об изменениях выходных аэроакустических параметров и отклонении уровней звукового давления от эталонных, по которым определяют наличие дефектов в определенном секторе или точке проточной части двигателя. Из описания данного аналога следует, что применяется прием и передача данных по радиоканалу, что позволяет не приближаться к ГТД.

Недостаткам данного способа являются относительно высокая сложность алгоритма работы измерительной аппаратуры, низкая чувствительность оборудования, применяемого с таким способом измерения, к возможным неисправностям в вентиляторе и (или) компрессоре ГТД, невозможность применения способа для исследования акустических характеристик исследуемого объекта при его перемещениях, например, в полетных условиях. Кроме того, данный способ измерения акустического шума обладает погрешностью, обусловленной возможным влиянием на показания измерительной системы гидродинамических пульсаций давления, вызванных вихревыми структурами.

Известен способ измерения пульсаций давления (Патент РФ 2419076, МПК G01L 9/12), в котором на поверхность объекта исследования наклеивают пленочные датчики пульсаций давления, задают градуировочные значения пульсаций давления, из общего сигнала выделяют сигналы шумов и помех разного происхождения, в том числе динамического и электромагнитного происхождения, градуируют чувствительные элементы датчика, определяют коэффициенты преобразования измерительного канала, регистрируют пульсации в индикаторе, например, в компьютере, при этом градуировку датчика, помещаемого в разную газовую среду, осуществляют при заданных в отдельности значениях пульсаций влажности и температуры, затем при заданных одновременно значениях пульсаций давления, влажности и температуры.

К основным недостаткам данного аналога следует отнести повышенную трудоемкость работ, связанную с градуировкой измерительного канала в условиях воздействия помех разного происхождения. Кроме того, проблема минимизации погрешности измерения акустического шума из-за влияния гидродинамических пульсаций давления, остается нерешенной.

В качестве прототипа, наиболее близкого по технической сущности и совокупности признаков, выбран способ измерения параметров пульсирующего потока (Патент РФ 2559566, МПК G01P 5/14). Данный способ заключается в том, что измеряют и регистрируют мгновенные значения трех компонент скорости потока (осевой, радиальной и окружной), пульсаций полного и статического давлений в любой плоскости насадка, при этом используют приемное устройство насадка с не менее чем четырьмя датчиками пульсаций давления, осуществляют сбор, цифровое преобразование и регистрацию аналоговых данных, поступающих с датчиков, производят обработку показаний датчиков с использованием тарировочных кривых, производят визуальное наблюдение за работой каждого из датчиков, проводят спектральный анализ измеренных данных, определяют мгновенные направления потока, значения числа Маха (М), значения углов атаки и скольжения, коэффициента давления с помощью аппроксимирующих коэффициентов, определенных по измеренным давлениям. При этом, в качестве чувствительных элементов используются малоинерционные, малогабаритные (диаметром 1,6 мм) датчики пульсаций давления; приемное устройство насадка, размещаемое в газовый поток, реализовано в виде полусферы и имеет небольшой габарит (диаметром 8 мм), используется регистратор с частотой опроса 200 кГц.

Из описания прототипа следует, что в основе изобретения лежит решение задачи одновременного определения трех компонент скорости, статического и полного давлений пульсирующего потока, а применение данного способа позволяет определить структуру газового потока в лопаточных машинах, например, в компрессоре, позволяет повысить точность измерений газодинамических параметров потока, достоверность и информативность методов исследования структуры потока в компрессорах.

Основным, недостатком прототипа, как и ранее рассмотренных выше аналогов, является то, что при измерении пульсаций давления возникает погрешность, связанная с тем, что с помощью датчиков пульсаций невозможно различить акустические и гидродинамические пульсации.

Примером гидродинамических пульсаций в авиационных двигателях являются пульсации скорости воздушного потока, имеющиеся в вихревом следе за лопаткой вентилятора, или вызванные срывом воздушного потока с кромки разделительного корпуса турбореактивного двухконтурного двигателя. Эти и подобные явления снижают точность измерения акустического шума, генерируемого вентиляторам авиационного двигателя. Особенно остро эта проблема стоит при оценке акустического шума современных двухконтурных двигателей со степенью двухконтурности 8 и более, где шум от вентилятора является определяющим в акустическом шуме двигателя, а задача достоверного измерения уровней звукового давления и частотного спектра в проточной части двигателя становится очень актуальной.

Технической задачей, решение которой обеспечивается только при осуществлении предлагаемого изобретения и не может быть реализовано при использовании прототипа, является выделение акустических пульсаций давления в общей структуре шума авиационных газотурбинных двигателей за счет обеспечения нечувствительности измерительного оборудования к гидродинамическим пульсациям газового потока.

Техническим результатом изобретения является повышение точности измерения уровня звукового давления и частотного спектра акустического шума авиационных газотурбинных двигателей за счет исключения влияния пульсаций газового потока, имеющих гидродинамическую природу, на показания измерительного оборудования, с использованием дополнительных измерений и тарировочных графиков.

Изобретение реализуется последовательным выполнением следующих этапов и операций:

1. Измеряют полное р0 и статическое р давления, а также температуру торможения Т0 газового потока.

2. Определяют число Маха М по измеренным данным р0 и р, используя известное соотношение:

где γ - показатель адиабаты.

3. Для полученного значения числа Маха определяют численное значение стандартной газодинамической функции β:

4. В качестве датчика первичной информации для измерения пульсаций акустического давления газового потока используют проволочный датчик термоанемометра.

Общеизвестно, что нить датчика термоанемометра чувствительна к массовому расходу m и температуре торможения T0:

где е - выходной сигнал термоанемометра;

Sm и ST - соответствующие безразмерные коэффициенты чувствительности;

m=ρu, ρ - плотность потока, u - скорость потока. Штрихами отмечены пульсационные величины.

При значении числа Маха потока, соответствующего измерениям в аэродинамическом эксперименте, осуществляют тарировку нагретой нити датчика термоанемометра по массовому расходу m и температуре торможения Т0 для разных величин относительного нагрева a=(Rw-R)/R, где Rw и R соответственно сопротивление нагретой и не нагретой нити датчика термоанемометра. Т.е. определяют уровень выходного сигнала е термоанемометра в зависимости от массового расхода m (Фиг. 1а) и температуры торможения T0 газового потока (Фиг. 1б):

5. Для разных величин относительного нагрева нити датчика термоанемометра а определяются коэффициенты чувствительности к массовому расходу Sm, температуре торможения и их отношение r:

Указанные параметры зависят от числа Маха и величины относительного нагрева а.

6. Для числа Маха, соответствующего условиям аэродинамического эксперимента по измерению акустического шума, определяют требуемое значение а для выполнения условия r=B

7. Измерение пульсаций акустического шума производится при выбранном значении а. При этих условиях выходной сигнал термоанемометра е будет определяться только акустическими пульсациями давления.

Техническая задача решается тем, что в способе измерения пульсаций газового потока, в котором измеряют скорость газового потока, статическое и полное давление потока, осуществляют сбор и регистрацию данных, поступающих с датчиков измерения, производят обработку показаний датчиков, определяют (рассчитывают) значения числа Маха (М), проводят спектральный анализ измеренных данных, при этом дополнительно измеряют температуру T0 торможения газового потока, а в качестве датчика пульсаций акустического давления и скорости потока используют термоанемометр, по определенному (рассчитанному) значению числа Маха (М) определяют значение газодинамической функции β, осуществляют тарировку датчика термоанемометра путем определения зависимости выходного сигнала термоанемометра в функции от массового расхода m и температуры T0 торможения газового потока для разных величин относительного нагрева а определяют отношение r коэффициентов чувствительности нити датчика термоанемометра к массовому расходу m и температуре T0 торможения, также для числа М, соответствующего условиям аэродинамического эксперимента, определяют требуемое значение а при котором выполняется условие равенства r=β; при этом для исключения влияния пульсаций газового потока, имеющих гидродинамическую природу, измерение акустического шума осуществляют при выбранном значении относительного нагрева а.

Для решения поставленной задачи:

- в качестве термоанемометра предпочтительно использовать термоанемометр постоянного тока, т.к. данный тип датчика может обеспечивать постоянный частотный диапазон измерений не только при максимальных значениях величины перегрева датчика, что необходимо при измерениях в потоках, содержащих различные типы пульсаций, но и при необходимости разделения различных типов пульсаций. Например, термоанемометр типа ССА-6 разработки Института теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) с проволочным датчиком с нитью толщиной 5…10 микрон или его западные аналоги компаний DANTEC, Дания; TSI, США и др.

- число Маха потока можно определять пневмометрическим способом с помощью трубки Пито-Прандтля в месте измерения пульсаций, но предпочтительно использовать малоинерционные датчики полного и статического давления и последующую вычислительную процедуру;

- тарировку датчика термоанемометра необходимо проводить в аэродинамической трубе или в специальной тарировочной установке. Возможным примером аэродинамической трубы является установка баллонного типа периодического действия Т-325М ИТПМ СО РАН (число Маха 0,2…4,0, давление торможения до 20 атмосфер, сечение рабочей части 4×4 см2);

- в качестве датчика температуры T0 торможения газового потока целесообразно использовать малогабаритные, высоконадежные терморезистивные датчики (терморезисторы), широко применяемые для измерения температуры воздуха на входе в газотурбинный двигатель, например, типа П-98АМ или П-117, или распределенные оптоволоконные датчики.

Изобретение поясняется нижеследующими графическими материалами.

На Фиг. 1а. представлен график зависимости уровня выходного сигнала е термоанемометра от массового расхода m.

На Фиг. 1б. представлен график зависимости уровня выходного сигнала е термоанемометра от температуры торможения T0 газового потока.

На Фиг. 2. представлена блок-схема измерения акустического шума для реализации заявляемого способа (на примере измерения акустических пульсаций газового потока, создаваемых вентиляторной ступенью авиационного двигателя).

Перед вентилятором 7 газотурбинного двигателя, акустический шум которого необходимо измерить, размещаются датчики параметров газового потока - блоки 1, 2, 3 и 4.

Блок 1 - датчик измерения полного давления Р0, выход которого подается на вход блока 5.

Блок 2 - датчик измерения статического давления Р, выход которого подается на вход блока 5.

Блок 3 - термоанемометр, который обеспечивает измерение скорости u потока и уровня пульсаций газового потока. Выход термоанемометра подается на вход блока 5.

Блок 4 - датчик измерения температуры T0 торможения потока, выход которого подается на вход блока 5.

Блок 5 - модуль ввода данных в персональную ЭВМ от блоков 1, 2, 3 и 4. Блок 5 представляет собой типовой аналого-цифровой преобразователь и обеспечивает преобразование выходных сигналов датчиков параметров потока в цифровой двоичный код для обработки в персональной ЭВМ.

Блок 6 - персональная ЭВМ. В указанной ЭВМ происходит обработка измеренной информации о параметрах потока на входе в газотурбинный двигатель; хранение всех констант, функциональных зависимостей, данных тарировочных графиков выходного сигнала е термоанемометра, а также вычисление числа М, газодинамической функции β, параметра r, уровня акустических пульсаций давления.

Устройство работает следующим образом. При работе авиационного газотурбинного двигателя его вентилятор 7 генерирует акустический шум. Одновременно в газовом потоке возможно наличие гидродинамических пульсаций давления, имеющихся в вихревом следе за лопаткой вентилятора 7, или вызванные срывом воздушного потока с кромки разделительного корпуса газотурбинного двигателя. Однако, за счет обеспечения нечувствительности термоанемометра к гидродинамическим пульсациям газового потока на основе вышеуказанного алгоритма (последовательности) действий и измерений дополнительных параметров, выполнения условия равенства отношения r коэффициентов чувствительности к массовому расходу Sm, температуре торможения газодинамической функции β(r=β), обеспечивается определение акустических пульсаций давления.

Представленный способ измерения пульсаций давления позволит разделять акустические и гидродинамические пульсации давления даже вблизи стенки, таким образом, амплитуда акустических пульсаций давления будет определена существенно более точно. Представленный способ измерения пульсаций давления позволит с высокой точность исследовать генерации широкополосного шума вентиляторной ступени авиационного двигателя или изучать пульсации давления в межлопаточном канале высоконапорного компрессора высокого давления. Появится возможность выделять акустические пульсации на фоне мощных гидродинамических возмущений. Другими способами исследовать подобные процессы в настоящее время невозможно.

Способ измерения акустических пульсаций газового потока, в котором измеряют скорость газового потока, статическое и полное давление потока, осуществляют сбор и регистрацию данных, поступающих с датчиков измерения, производят обработку показаний датчиков, определяют (рассчитывают) значения числа Маха (М), отличающийся тем, что дополнительно измеряют температуру T торможения газового потока, а в качестве датчика пульсаций акустического давления и скорости потока используют термоанемометр, по рассчитанному значению числа Маха (М) определяют значение газодинамической функции β, осуществляют тарировку термоанемометра путем определения зависимости выходного сигнала термоанемометра в функции от массового расхода m и температуры Т торможения газового потока для разных величин относительного нагрева нити a=(R-R)/R, где R и R соответственно сопротивление нагретой и не нагретой нити датчика термоанемометра; определяют отношение r коэффициентов чувствительности датчика термоанемометра к массовому расходу m и температуре торможения; также для числа М, соответствующего условиям аэродинамического эксперимента, определяют требуемое значение относительного нагрева нити а, при котором выполняется условие равенства r=β; при этом измерение акустического шума осуществляют при выбранном значении относительного нагрева датчика термоанемометра а.
Способ измерения акустических пульсаций газового потока
Способ измерения акустических пульсаций газового потока
Способ измерения акустических пульсаций газового потока
Источник поступления информации: Роспатент

Показаны записи 11-20 из 54.
25.08.2017
№217.015.c994

Холодный тигель

Изобретение относится к области электротехники, в частности к конструкциям водоохлаждаемых тиглей с индукционным нагревом. Технический результат заключается в повышении эффективности нагрева расплавляемого материала и в снижении энергозатрат, за счет отведения верхнего и нижнего контура для...
Тип: Изобретение
Номер охранного документа: 0002619458
Дата охранного документа: 16.05.2017
26.08.2017
№217.015.e559

2-арил-2,4-дигидрокси-2,5-дигидро-3-гетерил-5-оксо-1н-пиррол-1-ил-4-метилбелзолсульфаниламиды, обладающие анальгетической активностью

Изобретение относится к области органической химии, а именно к новым производным метилбензолсульфонамида формулы (I), где Х=О, Ar=4-Me-CH (a); Х=О, Ar=4-Cl-CH (б); Х=NH, Ar=4-Cl-CH (в). Технический результат: получены новые соединения, обладающие анальгетической активностью. 2 табл., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002626650
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e6f0

Способ получения 4-ароил-3-гидрокси-1-(2-гидроксифенил)-8-тиоксо-1,7-диазаспиро[4.4]нон-3-ен-2,6-дионов

Изобретение относится к области органической химии, а именно к способу получения 4-ароил-3-гидрокси-1-(2-гидроксифенил)-8-тиоксо-1,7-диазаспиро[4.4]нон-3-ен-2,6-дионов, отличающемуся тем, что 3-ароилпирроло[2,1-с][1,4]бензоксазин-1,2,4-трионы подвергают взаимодействию с тиоацетамидом в среде...
Тип: Изобретение
Номер охранного документа: 0002627276
Дата охранного документа: 04.08.2017
26.08.2017
№217.015.e712

Способ получения (е)-2-арил-8-[арил(гидрокси)метилен]-8а-гидрокситетрагидропирроло[1,2-а]пиразин-1,6,7(2н)-трионов, проявляющих анальгетическую активность

Изобретение относится к области органической химии, а именно к способу получения (E)-2-арил-8-[арил(гидрокси)метилен]-8а-гидрокситетрагидропирроло[1,2-]пиразин-1,6,7(2H)-трионов указанной ниже формулы, где Ar=Ph, СНМе-4; Ar=Ph, CHCl-4, отличающийся тем, что...
Тип: Изобретение
Номер охранного документа: 0002627275
Дата охранного документа: 04.08.2017
26.08.2017
№217.015.ed04

Способ детекции ионов меди в окружающей среде и биосенсор для его осуществления

Группа изобретений относится к области биохимии. Предложен штамм бактерий BL21 DE3 pClcRFP для детекции ионов меди, биосенсор и способ детекции ионов меди в анализируемой жидкой среде. Биосенсор включает корпус с микроканалами для анализируемой жидкой среды, внутри микроканалов ловушки в виде...
Тип: Изобретение
Номер охранного документа: 0002628704
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f70f

Рекомбинантная плазмидная днк pclcrfp, кодирующая продукцию флуоресцентного белка rfp, для определения биодоступных хлорированных катехолов, их аналогов и тяжёлых металлов

Изобретение относится к области биохимии, генной инженерии и биотехнологии, в частности к рекомбинантной плазмидной ДНК pClcRFP. Указанная плазмида pClcRFP кодирует продукцию гибридного флуоресцентного белка RFP для определения биодоступных хлорированных катехолов, их аналогов и тяжелых...
Тип: Изобретение
Номер охранного документа: 0002639237
Дата охранного документа: 20.12.2017
19.01.2018
№218.016.077e

Способ получения 9-ароил-8-гидрокси-6-(2-гидроксифенил)-2-фенил-1-тиа-3,6-диазаспиро[4.4]нон-2,8-диен-4,7-дионов

Изобретение относится к способу получения 9-ароил-8-гидрокси-6-(2-гидроксифенил)-2-фенил-1-тиа-3,6-диазаспиро[4.4]нон-2,8-диен-4,7-дионов, представленных общей формулой II (а-в), где Ar=CHBr-4 (а), CHCl-4 (б), Ph (в), X=Н (а, б), Cl (в). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002631432
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.08f7

Новый вариант расслаивания в системе антипирин (ап) - вода - сульфат натрия

Изобретение относится к аналитической химии, в частности, к способам извлечения солей металлов из водных растворов без органического растворителя с помощью расслаивающейся системы антипирин (АП)-вода-сульфат натрия. Расслаивающаяся система для выделения ионов металлов из водных растворов,...
Тип: Изобретение
Номер охранного документа: 0002631806
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.08fb

Способ получения 2-арил-8-фенил-3,4,9,14-тетрагидробензо[b]пиразино[1',2':1,2]пирроло[2,3-е][1,4]диазепин-1,6,7(2н)-трионов

Изобретение относится к новым индивидуальным соединениям класса бензо[b]пиразино[1',2':1,2]-пирроло[2,3-е][1,4]диазепинов, которые проявляют флуоресцентные свойства. Технический результат - получение новых соединений, которые могут быть использованы в качестве исходных продуктов для синтеза...
Тип: Изобретение
Номер охранного документа: 0002631857
Дата охранного документа: 27.09.2017
19.01.2018
№218.016.096e

Этиловый эфир 2-(((z)-амино((z)-2,4-диоксо-5-(2-оксо-2-фенилэтилиден)пирролидин-3-илиден)метил)амино)-4,5,6,7-тетрагидробензо[b]тиофенкарбоновой кислоты, обладающий анальгетической активностью

Изобретение относится к этиловому эфиру 2-(((Z)-амино((Z)-2,4-диоксо-5-(2-оксо-2-фенилэтилиден)пирролидин-3-илиден)метил)амино)-4,5,6,7-тетрагидробензо[b]тиофенкарбоновой кислоты формулы: обладающему анальгетической активностью. Технический результат: получено соединение с высоким выходом,...
Тип: Изобретение
Номер охранного документа: 0002631649
Дата охранного документа: 26.09.2017
Показаны записи 11-20 из 28.
05.12.2018
№218.016.a382

Устройство для определения пространственного распределения скорости потока газа

Изобретение относится к измерительной технике и может быть использовано для исследования структуры и параметров потока газа, преимущественно для оперативного определения профиля скорости потока газа. Сущность изобретения заключается в том, что устройство для определения пространственного...
Тип: Изобретение
Номер охранного документа: 0002673990
Дата охранного документа: 03.12.2018
20.02.2019
№219.016.bea5

Система управления тягой газотурбинного двигателя самолета

Изобретение относится к системам управления силовыми газотурбинными установками. Система управления тягой газотурбинного двигателя самолета включает в себя вычислительный модуль (1) управления тягой, электронный регулятор (2), топливный насос-регулятор (4), тросовый механизм (7), а также...
Тип: Изобретение
Номер охранного документа: 0002393977
Дата охранного документа: 10.07.2010
20.02.2019
№219.016.bf00

Способ защиты газотурбинного двигателя от перегрева

Изобретение относится к области управления газотурбинными двигателями, в частности к способам защиты турбин авиационных газотурбинных двигателей (ГТД) от перегрева. Техническая задача заключается в повышении надежности за счет достоверной оценки теплового состояния выходящих газов за турбиной и...
Тип: Изобретение
Номер охранного документа: 0002315885
Дата охранного документа: 27.01.2008
20.02.2019
№219.016.c30d

Способ автоматического управления тягой газотурбинных двигателей

Способ автоматического управления тягой газотурбинных двигателей (ГТД) заключается в изменении частот вращения n двигателей по программе n =f(L, Т, Р), где: L - угол поворота рычага управления двигателем, Твх - температура воздуха на входе в ГТД, Р - давление воздуха на входе в ГТД....
Тип: Изобретение
Номер охранного документа: 0002406849
Дата охранного документа: 20.12.2010
20.02.2019
№219.016.c30f

Способ эксплуатации газотурбинной установки

Изобретение относится к области эксплуатации газотурбинных установок, в частности оценке технического состояния газотурбинного двигателя и осуществлению контроля степени загрязнения газовоздушного тракта двигателя. Технический результат - повышение достоверности определения необходимости...
Тип: Изобретение
Номер охранного документа: 0002406990
Дата охранного документа: 20.12.2010
11.03.2019
№219.016.d8ad

Способ защиты газотурбинной установки от раскрутки силовой турбины

Изобретение относится к системам управления газотурбинных установок, а именно к системам защиты газотурбинных установок для механического привода и привода электрогенератора от опасных забросов частоты вращения (раскрутки) свободной силовой турбины. Техническая задача, решаемая изобретением,...
Тип: Изобретение
Номер охранного документа: 0002316665
Дата охранного документа: 10.02.2008
11.03.2019
№219.016.d8b0

Газотурбинный двигатель

Газотурбинный двигатель содержит компрессор высокого давления, выход которого соединен с внутренней полостью первой рабочей лопатки турбины высокого давления. Соединение осуществляют по двум воздушным магистралям, первая из которых включает воздушную полость камеры сгорания, на входе...
Тип: Изобретение
Номер охранного документа: 0002316662
Дата охранного документа: 10.02.2008
11.03.2019
№219.016.d8b6

Способ диагностики неустойчивой работы компрессора газотурбинного двигателя на запуске

Изобретение относится к области раннего обнаружения неустойчивой работы компрессора газотурбинного двигателя на запуске и позволяет повысить быстродействие диагностики неустойчивой работы компрессора на основе информации о динамике изменения отношения первых производных контролируемых...
Тип: Изобретение
Номер охранного документа: 0002316678
Дата охранного документа: 10.02.2008
11.03.2019
№219.016.d8c7

Способ диагностики двухканальной системы автоматического управления газотурбинного двигателя

Изобретение относится к системам автоматического регулирования газотурбинных двигателей и позволяет повысить надежность работы двухканальной системы автоматического управления за счет функционального контроля селектора переключения каналов в процессе выключения двигателя по окончании полета....
Тип: Изобретение
Номер охранного документа: 0002313677
Дата охранного документа: 27.12.2007
09.05.2019
№219.017.4f68

Способ управления газотурбинным двигателем на режимах разгона и дросселирования

Способ управления газотурбинным двигателем на режимах разгона и дросселирования включает измерение частоты вращения n и ускорения n  ротора турбокомпрессора, измерение температуры воздуха Твх* на входе в турбокомпрессор, вычисление приведенной по температуре воздуха на входе в турбокомпрессор...
Тип: Изобретение
Номер охранного документа: 0002403419
Дата охранного документа: 10.11.2010
+ добавить свой РИД