×
18.05.2019
219.017.55f9

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ИНИЦИАЦИИ СВЧ-РАЗРЯДА И ГЕНЕРАЦИИ ВЫСОКОТЕМПЕРАТУРНОЙ СТРУИ ПЛАЗМЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиационному и энергетическому двигателестроению и химическому машиностроению. Способ для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы заключается в том, что в газовой среде в электромагнитном поле СВЧ-излучения между цилиндрическими коаксиальными металлическими электродами, образующими волновод и установленными на магнетроне, создают объемный СВЧ-разряд, генерирующий плазму. В выходной части цилиндрических коаксиальных металлических электродов путем установки в ней кольцевой вставки из радиопрозрачного термостойкого диэлектрического материала формируют зону с напряженностью образованного электромагнитного поля меньшей, чем для организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, который развивается в устойчивый объемный СВЧ-разряд, а при дополнительной подаче в зону СВЧ-разряда воздуха и газообразного или парообразного горючего образуется горючая смесь, которая возбуждается и воспламеняется СВЧ-разрядом и увеличивает тепловую мощность образованной высокотемпературной струи плазмы, воздействующей на окружающее пространство, при этом дополнительную подачу в зону СВЧ-разряда воздуха и газообразного или парообразного горючего, образующих горючую смесь, осуществляют вблизи зоны разряда или под углом к потоку, обтекающему выходную часть образованного волновода, или с образованием закрученного течения горючей смеси. Техническим результатом является эффективная инициация СВЧ-разряда и генерация высокотемпературной струи плазмы, генерирующая возбужденный высокотемпературный газ на выходе из устройства. 3 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к автомобильному, авиационному, химическому и энергетическому машиностроению, а именно к устройствам зажигания двигателей, реакторов и энергетических установок, использующих смеси газообразных и паровых углеводородов и биотоплив с воздухом и использующих микроволновый СВЧ-разряд для воспламенения смесей и образования высокотемпературной плазмы.

Известны устройства (свечи) зажигания для камер сгорания поршневых и газотурбинных авиационных двигателей и энергетических установок [1], включающие электроды, расположенные, как правило, соосно или произвольным образом в корпусе свечи и изолированные керамическими экранами для организации импульсного искрового разряда с частотой повторения f=5-100 Гц и, соответственно, получения высокотемпературной плазмы, способной поджечь подготовленную смесь газообразного или парового горючего с воздухом. Энергия, высокое напряжение до нескольких киловольт со средней мощностью от 10 до 50 Вт и более, в зависимости от условий работы для инициации разряда подводится к одному из электродов с помощью высоковольтных проводов. Эти устройства (свечи) зажигания широко используются, достигли высокого технологического совершенства и обладают значительным ресурсом.

Однако существует проблема создания систем воспламенения для расширенного диапазона работы по параметрам среды, например температуры и давления воздуха, типа и концентрации горючего, а также учета условий эксплуатации и конструктивных особенностей существующих и перспективных объектов - камер сгорания авиационных двигателей и энергоустановок, систем дожигания и утилизации горючих смесей, использующих биотоплива, где требуются устройства (свечи) зажигания, не только инициирующие воспламенение, но и обеспечивающие уменьшение уровня выбросов СО и NOX. В последнем случае свеча зажигания возможно должна работать в «пилотном», т.е. непрерывном режиме, а следовательно, при пониженной мощности. Особенно остро эта проблема стоит при организации повторного запуска камеры сгорания ВРД при его заглохании на больших высотах Н=8-10 км, где параметры смеси - давление и температура, а также резкое ухудшение качества смешения горючего с воздухом на режимах авторотации приводят к резкому сужению области воспламенения смеси [2]. Увеличение мощности искровых свечей зажигания и, следовательно, тепловых нагрузок интенсифицирует эрозию электродов и изолирующих экранов и ведет к резкому уменьшению их ресурса, нестабильности характеристик и, как следствие, к ненадежности работы.

По мере ухудшения рабочих условий в зоне разряда его потребная длительность и энергия для воспламенения углеводородо-воздушных смесей возрастает [3], но из-за причин, указанных выше, с искровыми свечами это трудно обеспечить и поэтому рассматриваются разряды, реализуемые другими типами плазменных генераторов, например, основанных на СВЧ-излучении.

Известны также устройства для генерации плазмы с использованием газового электрического разряда в виде охватывающего разрядную область кольцевого искрового источника ультрафиолетового излучения [4, 5].

Недостатком технического решения [5] является то, что еще недостаточно изучены особенности его работы и характеристики, чтобы реализовать их в практическом приложении. Кроме того, существующие СВЧ-генераторы электромагнитных волн с длиной волны в сантиметровом диапазоне обеспечивают напряженность поля Е при давлениях Р>100 Торр только при импульсном режиме работы СВЧ-генератора с длительностью импульса излучения, не превышающей нескольких десятков микросекунд. Поэтому момент начала разряда из-за некоторой неопределенности существования свободных электронов в момент пробоя имеет статистический разброс, а следовательно, и его длительность также не будет постоянной.

Наиболее близким к заявляемому устройству для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы по принципу работы является устройство, представленное в работе [6], где описана концепция искровой свечи, базирующейся на микроволновом коаксиальном резонаторе, образованном внешним и внутренним электродами с генерацией плазменного образования у концов электродов в газовой среде.

Недостатком данного технического решения является низкий диапазон работы по параметрам среды, например температуры и давления воздуха, типа и концентрации горючего, а также учета условий эксплуатации и конструктивных особенностей существующих и перспективных объектов - камер сгорания авиационных двигателей и энергоустановок, систем дожигания и утилизации горючих смесей, использующих биотоплива, где требуются устройства (свечи) зажигания, не только инициирующие воспламенение, но и обеспечивающие уменьшение уровня выбросов СО и NOX.

Задачей изобретения является разработка устройства и способа для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, преимущественно в смесях газообразного, парового горючего и биотоплив с воздухом, обеспечивающие меньший уровень требуемого напряжения пробоя, широкий диапазон работоспособности по давлению и температуре среды и генерируемой энергии высокотемпературной смеси продуктов сгорания.

В предлагаемом устройстве электрический разряд возбуждается на диэлектрической радиопрозрачной термостойкой кольцевой вставке, закрывающей выход из волновода и изолирующей электроды, но проницаемой для СВЧ-излучения. Разряд при этом на начальной стадии носит характер скользящего поверхностного СВЧ-разряда, замыкающего межэлектродное пространство. Преимуществом такого рода разряда по сравнению с разрядом, локализованным в чисто газовой среде [6], является, прежде всего, существенно более низкий порог плазмообразования Uпроб. Так, для пробоя воздуха при давлении 1 атм необходима напряженность электрического микроволнового поля Uпроб ˜ 30 кВ/см, тогда как порог пробоя по поверхности в рассматриваемом случае при этом же давлении не превосходит Uпроб ≈ 1 кВ/см.

Следует также отметить, что порог микроволнового поверхностного скользящего разряда в малой степени зависит от давления газовой среды и от рода газа. В то же время порог газового разряда почти пропорционален давлению газовой среды и существенным образом зависит от состава газа.

Кроме того, при скользящем микроволновом поверхностном разряде энерговыделение происходит преимущественно вне электродов в разрядном канале, прилегающем к поверхности диэлектрика и замыкающем межэлектродный промежуток. В прототипе [6] разрядная область располагается в непосредственной близости от конца внутреннего электрода. Это приводит к относительно быстрому разрушению центрального электрода и к снижению ресурса прототипа.

Технический результат достигается в заявляемых устройстве и способе для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, где первоначально реализуется поверхностный СВЧ-разряд на диэлектрической (радиопрозрачной, термостойкой) кольцевой вставке, закрывающей в выходном сечении пространство между коаксиальными металлическими электродами, образующими волновод, инициированный СВЧ-излучением, генерирующий плазму и интенсивное ультрафиолетовое излучение, которые возбуждают и воспламеняют смесь горючего с воздухом, подаваемую в зону горения разряда, образуя возбужденные высокотемпературные продукты горения, воздействующие на окружающее пространство. Коаксиальный волновод устанавливается на магнетрон и его длина выбирается в соответствии с рекомендациями работы [7] так, что в выходном сечении волновода реализуется интерференционная пучность электромагнитной волны. Энергия высокотемпературного газа, генерируемого заявляемым устройством, может изменяться варьированием подаваемой энергии на магнетрон и расходов воздуха и топлива, подаваемых и распределяемых через отверстия вблизи зоны разряда, выполненные в корпусе на торце, или подаваемых через вспомогательные форсунки вне устройства так, чтобы подготовленная горючая смесь попадала в область разряда и воспламенялась им.

Для этого в заявляемом способе для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, заключающемся в том, что в газовой среде в электромагнитном поле СВЧ-излучения между цилиндрическими коаксиальными металлическими электродами, образующими волновод и установленными на магнетроне, создают объемный СВЧ-разряд, генерирующий плазму, причем согласно изобретению в выходной части цилиндрических коаксиальных металлических электродов путем установки в ней кольцевой вставки из радиопрозрачного термостойкого диэлектрического материала формируют зону с напряженностью образованного электромагнитного поля меньшей, чем для организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, который развивается в устойчивый объемный СВЧ-разряд, а при дополнительной подаче в зону СВЧ-разряда воздуха и газообразного или парообразного горючего образуется горючая смесь, которая возбуждается и воспламеняется СВЧ-разрядом и увеличивает тепловую мощность образованной высокотемпературной струи плазмы, воздействующей на окружающее пространство, при этом дополнительную подачу в зону СВЧ-разряда воздуха и газообразного или парообразного горючего, образующих горючую смесь, осуществляют вблизи зоны разряда или под углом к потоку, обтекающему выходную часть образованного волновода, или с образованием закрученного течения горючей смеси.

Заявляемое устройство для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, реализующее заявляемый способ, содержит СВЧ-магнетрон и коаксиальные цилиндрические металлические электроды, образующие волновод, и установленные на магнетроне, причем согласно изобретению в выходной части цилиндрических коаксиальных металлических электродов устанавливают внутреннюю кольцевую вставку из радиопрозрачного термостойкого диэлектрического материала, на которой формируется зона с напряженностью образованного электромагнитного поля меньшей, чем для организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, который развивается в устойчивый объемный СВЧ-разряд.

Заявляемое устройство для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы (вариант), реализующее заявляемый способ, содержит СВЧ-магнетрон, коаксиальные цилиндрические металлические электроды, образующие волновод, и установленные на магнетроне, причем согласно изобретению в выходной части цилиндрических коаксиальных металлических электродов устанавливают внутреннюю кольцевую вставку из радиопрозрачного термостойкого диэлектрического материала, на которой формируется зона с напряженностью образованного электромагнитного поля меньшей, чем для организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, который развивается в устойчивый объемный СВЧ-разряд, при этом образованный волновод, установленный на магнетроне, заключают в корпус таким образом, что цилиндрические коаксиальные металлические электроды с установленной вблизи выходной части внутренней кольцевой вставкой из радиопрозрачного термостойкого диэлектрического материала формируют зону с напряженностью электромагнитного поля меньшей, чем при организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, развивающегося в устойчивый объемный СВЧ-разряд, при этом в корпусе размещают систему подачи и распределения горючего или смеси горючего с воздухом, например, через отверстия на стенке, выполненные по периферии выходного конца волновода нормально или под углом к стенке так, что поверхность вставки, обтекаемая воздушным потоком, образует единую поверхность со стенкой корпуса.

Металлические коаксиальные электроды с внутренней кольцевой радиопрозрачной термостойкой вставкой, на которой формируется зона с напряженностью электромагнитного поля меньшей, чем при организации объемного СВЧ-разряда, но достаточной для инициации поверхностного СВЧ-разряда, развивающегося в устойчивый объемный СВЧ-разряд, установлены в корпусе без обтекания внешним воздушным потоком и обеспечивают подачу, воспламенение и горение смеси горючего с воздухом, подаваемой, например, через отверстия, выполненные по периферии вокруг выходного конца образованного волновода или с закруткой по отношению к боковой его поверхности.

На фиг.1 схематично показан прототип устройства [6] для инициации СВЧ-разряда с коаксиальными металлическими электродами, между которыми реализуется СВЧ-разряд.

На фиг.2 схематично показано заявляемое устройство для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы с коаксиальным металлическим волноводом с выходным отверстием, закрытым диэлектрической вставкой из радиопрозрачного материала, соединенным с источником электромагнитного СВЧ-излучения и размещенным на стенке объекта для инициации СВЧ-разряда.

На фиг.3 схематично показано устройство, установленное на стенке корпуса и обдуваемое воздушным потоком, с системой подачи горючего или смеси горючего с воздухом для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы с коаксиальным металлическим волноводом с внутренней изолирующей межэлектродной вставкой из радиопрозрачного материала, соединенным с источником электромагнитного СВЧ-излучения.

На фиг.4 схематично показано устройство, установленное в корпусе объекта (например, в форкамере), с системой подачи горючего или смеси горючего с воздухом с закруткой потока для увеличения времени пребывания газовой среды и для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы с коаксиальным металлическим волноводом с внутренней изолирующей межэлектродной вставкой из радиопрозрачного материала, соединенным с источником электромагнитного СВЧ-излучения.

Прототип устройства для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, показанный на фиг.1, содержит магнетрон 1, волновод, по которому распространяется электромагнитное СВЧ-излучение, состоящий из коаксиальных внешнего 2 и внутреннего 3 металлических электродов, между которыми инициируется СВЧ-разряд 4.

Предлагаемое устройство для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы на фиг.2 содержит магнетрон 1, волновод, по которому распространяется электромагнитное СВЧ-излучение, состоящий из коаксиальных внешнего 2 и внутреннего 3 металлических электродов, диэлектрическую радиопрозрачную кольцевую вставку 5, на которой инициируется поверхностный СВЧ-разряд 4 и которая является центрирующей и изолирующей проставкой для электродов волновода.

Для увеличения мощности устройства и расхода высокотемпературной плазмы вблизи конца внешнего электрода 2 устройства, фиг.3 и фиг.4, размещен коллектор 6 системы подачи горючего или смеси горючего с воздухом в зону разряда, так что при обтекании газовым потоком 7 устройства, установленного на стенке 8, организуется эффективное смешение и горение подаваемой смеси. В случае устройства, показанного на фиг.3, дополнительное горючее или смесь горючего с воздухом подается нормально к поверхности 8, а в случае форкамеры, показанной на фиг.4, подача горючего или смеси осуществляется так, чтобы организовать закрученное течение вблизи стенок 9 канала форкамеры.

Заявляемое устройство, реализующее заявляемый способ для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы, работает следующим образом.

Предлагаемое устройство для инициации разряда и генерации высокотемпературной плазмы устанавливается или изолированно в газовой среде, или на стенке канала, обтекаемого воздушным потоком, или в донной части форкамеры или стабилизирующего устройства.

СВЧ-излучатель создает электромагнитное поле с максимумом напряженности в выходном сечении волновода в рассматриваемой газовой среде, скорость воздуха (V) которой во внешнем потоке может изменяться от нуля до трансзвуковых значений и выше. Длина волновода выбирается (в соответствии с рекомендациями [7]) таким образом, чтобы обеспечить при заданной мощности магнетрона максимальное значение напряженности электромагнитного поля Е в выходном сечении, где установлена диэлектрическая шайба, разделяющая и центрирующая электроды волновода. При превышении напряжения Е величины напряжения пробоя Епроб в местах контакта металлических электродов с диэлектрической шайбой возникает пробой и реализуется СВЧ-разряд, располагающийся вблизи поверхности.

Горючее, подаваемое из коллектора 6, распределяется через отверстия в зависимости от условий его подачи, смешивается с воздухом, обтекающим устройство, фиг.3, и попадает в область СВЧ-разряда. В случае установки устройства в форкамере (фиг.4), в зону разряда подается или автономно подготовленная смесь горючего с воздухом, или организуется смешение горючего с воздухом в самой форкамере в необходимой пропорции, чтобы обеспечить требуемое значение коэффициента избытка топлива φ и стабильное воспламенение образующейся смеси. При этом для улучшения смешения и увеличения времени пребывания смеси компоненты подаются с закруткой. При прохождении смеси через область разряда, где температура среды достигает значений T=(2-4)×103 К, смесь дополнительно облучается ультрафиолетовым излучением разряда, возбуждается и воспламеняется. Скорость газа в канале корпуса устройства с учетом дросселирования течения при теплоподводе дозвуковая и поэтому реализуется эффективное сгорание топлива [4]. Изменяя расход подаваемого горючего (фиг.3) или смеси горючего с воздухом (фиг.4), а также изменяя схему распределения горючей смеси, можно регулировать расход высокотемпературного газа на выходе из устройства и его тепловую мощность.

Результатом является то, что устройство инициирует устойчивое воспламенение в форкамере или вблизи зоны разряда и образует высокотемпературную струю, состоящую из продуктов горения и плазмы СВЧ-разряда, которая используется для организации рабочего процесса в камере сгорания ДВС, ВРД или других целей, увеличивая надежность их работы и область эксплуатационных параметров.

Источники информации

1. Патент РФ №2285318, 2004 г.

2. Сосунов В.А., Литвинов Ю.А. «Неустановившиеся режимы работы авиационных газотурбинных двигателей». Москва, Машиностроение, 1975, стр.146-149.

3. С.Кунагаи. «Горение». Москва, Химия. Перевод с японского, 1979, стр.45-48.

4. Журнал теоретической физики (ЖТФ), 1987 г., том 57, вып.4, стр.861-886.

5. Патент РФ №2046559, 1992 г.

6. К.Linkenheil, H.-O.Ruob and W. Heinrich "Design and Evaluation of a Novel Spark-Plug Based on a Microwave Coaxial Resonator" (34th European Microwave Conference - Amsterdam, 2004), 2004.

7. Г.Т.Марков, Д.М.Сазонов. «Антенны», Москва, Энергия, 1975 г.

1.СпособдляинициацииСВЧ-разрядаигенерациивысокотемпературнойструиплазмы,заключающийсявтом,чтовгазовойсредевэлектромагнитномполеСВЧ-излучениямеждуцилиндрическимикоаксиальнымиметаллическимиэлектродами,образующимиволноводиустановленныминамагнетроне,создаютобъемныйСВЧ-разряд,генерирующийплазму,отличающийсятем,чтоввыходнойчастицилиндрическихкоаксиальныхметаллическихэлектродов,путемустановкивнейкольцевойвставкиизрадиопрозрачноготермостойкогодиэлектрическогоматериала,формируютзонуснапряженностьюобразованногоэлектромагнитногополяменьшей,чемдляорганизацииобъемногоСВЧ-разряда,нодостаточнойдляинициацииповерхностногоСВЧ-разряда,которыйразвиваетсявустойчивыйобъемныйСВЧ-разряд,апридополнительнойподачевзонуСВЧ-разрядавоздухаигазообразногоилипарообразногогорючегообразуетсягорючаясмесь,котораявозбуждаетсяивоспламеняетсяСВЧ-разрядомиувеличиваеттепловуюмощностьобразованнойвысокотемпературнойструиплазмы,воздействующейнаокружающеепространство,приэтомдополнительнуюподачувзонуСВЧ-разрядавоздухаигазообразногоилипарообразногогорючего,образующихгорючуюсмесь,осуществляютвблизизоныразрядаилиподугломкпотоку,обтекающемувыходнуючастьобразованноговолновода,илисобразованиемзакрученноготечениягорючейсмеси.12.УстройстводляинициацииСВЧ-разрядаигенерациивысокотемпературнойструиплазмы,содержащееСВЧ-магнетроникоаксиальныецилиндрическиеметаллическиеэлектроды,образующиеволновод,иустановленныенамагнетроне,отличающеесятем,чтоввыходнойчастицилиндрическихкоаксиальныхметаллическихэлектродовустанавливаютвнутреннююкольцевуювставкуизрадиопрозрачноготермостойкогодиэлектрическогоматериала,накоторойформируетсязонаснапряженностьюобразованногоэлектромагнитногополяменьшей,чемдляорганизацииобъемногоСВЧ-разряда,нодостаточнойдляинициацииповерхностногоСВЧ-разряда,которыйразвиваетсявустойчивыйобъемныйСВЧ-разряд.23.УстройстводляинициацииСВЧ-разрядаигенерациивысокотемпературнойструиплазмы,содержащееСВЧ-магнетрон,коаксиальныецилиндрическиеметаллическиеэлектроды,образующиеволновод,иустановленныенамагнетроне,отличающеесятем,чтоввыходнойчастицилиндрическихкоаксиальныхметаллическихэлектродовустанавливаютвнутреннююкольцевуювставкуизрадиопрозрачноготермостойкогодиэлектрическогоматериала,накоторойформируетсязонаснапряженностьюобразованногоэлектромагнитногополяменьшей,чемдляорганизацииобъемногоСВЧ-разряда,нодостаточнойдляинициацииповерхностногоСВЧ-разряда,которыйразвиваетсявустойчивыйобъемныйСВЧ-разряд,приэтомобразованныйволновод,установленныйнамагнетроне,заключаютвкорпустакимобразом,чтоцилиндрическиекоаксиальныеметаллическиеэлектродысустановленнойвблизивыходнойчастивнутреннейкольцевойвставкойизрадиопрозрачноготермостойкогодиэлектрическогоматериала,формируютзонуснапряженностьюэлектромагнитногополяменьшей,чемприорганизацииобъемногоСВЧ-разряда,нодостаточнойдляинициацииповерхностногоСВЧ-разряда,развивающегосявустойчивыйобъемныйСВЧ-разряд,приэтомвкорпусеразмещаютсистемуподачиираспределениягорючегоилисмесигорючегосвоздухом,например,черезотверстиянастенке,выполненныепоперифериивыходногоконцаволноводанормальноилиподугломкстенкетак,чтоповерхностьвставки,обтекаемаявоздушнымпотоком,образуетединуюповерхностьсостенкойкорпуса.34.Устройствопоп.3,отличающеесятем,чтометаллическиекоаксиальныеэлектродысвнутреннейкольцевойрадиопрозрачнойтермостойкойвставкой,накоторойформируетсязонаснапряженностьюэлектромагнитногополяменьшей,чемприорганизацииобъемногоСВЧ-разряда,нодостаточнойдляинициацииповерхностногоСВЧ-разряда,развивающегосявустойчивыйобъемныйСВЧ-разряд,установленывкорпусебезобтеканиявнешнимвоздушнымпотокомиобеспечиваютподачу,воспламенениеигорениесмесигорючегосвоздухом,подаваемой,например,черезотверстия,выполненныепоперифериивокругвыходногоконцаобразованноговолноводаилисзакруткойпоотношениюкбоковойегоповерхности.4
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Показаны записи 1-10 из 15.
10.06.2013
№216.012.4712

Способ переработки токсичных жидких отходов

Изобретение относится к способу переработки токсичных жидких отходов, который обеспечивает утилизацию образующихся при уничтожении химического оружия токсичных жидких отходов, таких же отходов различных производств и в местах применения веществ со фторсодержащими компонентами, содержащих...
Тип: Изобретение
Номер охранного документа: 0002483774
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.5286

Способ очистки, деструкции и конверсии газа

Изобретение предназначено для очистки газов от твердых, жидких, паро и газообразных неорганических и органических веществ, деструкции, конверсии и относится к газовой, химической отраслям промышленности. В способе очистки, деструкции и конверсии газов осуществляют воздействие высоковольтным...
Тип: Изобретение
Номер охранного документа: 0002486719
Дата охранного документа: 27.06.2013
20.04.2014
№216.012.bb16

Способ микроволновый конверсии метан-водяной смеси в синтез-газ

Изобретение относится к области химии. Метан-водяную смесь разделяют на два потока. Один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона, осуществляя...
Тип: Изобретение
Номер охранного документа: 0002513622
Дата охранного документа: 20.04.2014
20.07.2014
№216.012.e155

Способ получения нанодисперсных порошков нитрида бора и диборида титана

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при...
Тип: Изобретение
Номер охранного документа: 0002523471
Дата охранного документа: 20.07.2014
20.07.2015
№216.013.632f

Способ получения коллоидного раствора наноразмерного углерода

Изобретение может быть использовано при получении покрытий, уменьшающих коэффициент вторичной электронной эмиссии, выращивании алмазных плёнок и стёкол, элементов, поглощающих солнечное излучение. Коллоидный раствор наноразмерного углерода получают путём подачи органической жидкости - этанола,...
Тип: Изобретение
Номер охранного документа: 0002556938
Дата охранного документа: 20.07.2015
20.10.2015
№216.013.833c

Способ получения наноструктурированного углеродного покрытия

Изобретение относится к нанотехнологии и может быть использовано при изготовлении СВЧ-устройств, имеющих покрытия, позволяющие снизить коэффициент вторичной эмиссии электронов. Сначала поверхность пластины обрабатывают с помощью разрядов и создают на её поверхности рельеф. После этого нагревают...
Тип: Изобретение
Номер охранного документа: 0002565199
Дата охранного документа: 20.10.2015
25.08.2017
№217.015.9c83

Способ получения наноразмерных структур молибдена

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого...
Тип: Изобретение
Номер охранного документа: 0002610583
Дата охранного документа: 13.02.2017
20.01.2018
№218.016.1ce6

Способ микроволновой плазмохимической конверсии метана в синтез-газ и устройство для его осуществления

Изобретение относится к химии, в частности к устройствам для генерации микроволновых плазменных факелов с целью углекислотной и паровой и комбинированной конверсии метана в синтез-газ. В способе микроволновой плазмохимической конверсии метана в синтез-газ создают давление в рабочей камеры до...
Тип: Изобретение
Номер охранного документа: 0002640543
Дата охранного документа: 09.01.2018
10.05.2018
№218.016.3e51

Устройство микроволновой плазмохимической конверсии метана в синтез-газ

'Изобретение относится к химии, в частности к устройствам для генерации микроволновых плазменных факелов с целью углекислотной конверсии метана в синтез-газ. Устройство содержит источник микроволновой энергии и рабочую камеру, при этом на одном торце рабочей камеры выполнено входное окно, через...
Тип: Изобретение
Номер охранного документа: 0002648317
Дата охранного документа: 23.03.2018
26.10.2018
№218.016.9647

Асимметричный воздухозаборник для трехконтурного двигателя сверхзвукового самолета

Изобретение относится к входным устройствам высокоскоростных летательных аппаратов. Асимметричный воздухозаборник для трехконтурного двигателя сверхзвукового самолета содержит пространственный клин (1), обечайку (2), боковые стенки (3), дозвуковой диффузор (6), горло и систему управления...
Тип: Изобретение
Номер охранного документа: 0002670664
Дата охранного документа: 24.10.2018
+ добавить свой РИД