×
18.05.2019
219.017.55c4

СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА СПЛАВЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
02213801
Дата охранного документа
10.10.2003
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области машиностроения и может быть использовано, например, для увеличения долговечности лопаток турбин газотурбинных двигателей или стационарных газовых турбин. Изобретение направлено на повышение жаростойкости покрытий к газовой коррозии и повышение жаропрочности покрытий. Способ включает последовательное нанесение слоя покрытия на основе никеля, нанесение слоя покрытия на основе алюминия и термическую обработку, причем для нанесения слоя покрытия на основе никеля используют сплав следующего состава, мас. %: хром 2-30, алюминий 2-15, тантал 0,2-20, вольфрам 0,5-10, гафний 0,2-6, иттрий 0,001-5, кремний 0,1-5, никель - остальное до 100, а термическую обработку проводят при температуре Т≤1,05Т, где Т - температура закалки сплавов, на которые наносят покрытия. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области машиностроения, в частности к разделу химико-термической обработки сплавов, и может быть использовано, например, для увеличения долговечности лопаток турбин газотурбинных двигателей или стационарных газовых турбин.

Известен способ комплексной химико-термической обработки поверхностей деталей, в частности, методом изотермического напыления с последующей термодиффузионной обработкой (а.с. 494440, МКИ 4 С 23 С 4/12, БИ 45 за 1975 г.) - аналог.

В этом способе для повышения жаростойкости и жаропрочности покрытия перед нанесением покрытия из самофлюсующегося сплава наносят подслой из никеля, кобальта или сплавов на их основе толщиной 10-30% от суммарной толщины покрытия. После нанесения покрытия из самофлюсующегося сплава и после его оплавления до полного растворения подслоя проводят алитирование при температуре 900-950oС на всю толщину до содержания алюминия 5-10%, а затем подвергают алитированию на глубину 60-80 мкм до содержания алюминия 25-50%.

Недостатком данного способа является то, что, незначительно увеличивая жаропрочность и жаростойкость получаемых покрытий, этот способ усложняет процесс нанесения покрытий из-за многоступенчатости операции алитирования.

Известен способ нанесения покрытий на сплавы путем двухстадийной обработки, включающий последовательное нанесение первого слоя покрытия из сплава на основе никеля методом вакуумно-плазменного напыления, второго слоя покрытия на основе алюминия - хромоалитированием и последующую термическую обработку покрытия (патент РФ 2073742, МПК 6 С 23 С 4/08, БИ 5 за 1997 г.) - прототип.

Нанесение первого слоя покрытия на основе никеля осуществляют сплавом следующего состава: хром 28-30%, алюминий 6-8%, тантал 8-10%, иттрий 0,8-1,5%, никель - остальное до 100%. После нанесения второго слоя покрытия на основе алюминия подвергают закалке в вакууме при температуре 1160-1200oС в течение 1-2 часов с последующим отпуском в вакууме при температуре 900-1000oС в течение 1-2 часов.

Недостатком данного способа является низкая стойкость покрытия к газовой коррозии, что может быть приемлемо при работе в условиях низкотемпературной эксплуатации силовых установок с ресурсом до 30000 часов и более, однако при работе в условиях высоких температур, например в турбинах с высоким уровнем нагрузок, покрытия теряют работоспособность на ранних стадиях эксплуатации, задолго до выработки ресурса по условиям газовой коррозии.

Задачей данного изобретения является повышение жаростойкости покрытий к газовой коррозии и повышение жаропрочности покрытий.

Она решается в способе нанесения покрытий на сплавы, который предусматривает последовательное нанесение слоя покрытия на основе никеля, нанесение слоя покрытия на основе алюминия и термическую обработку, причем для нанесения слоя покрытия на основе никеля используют сплав следующего состава: хром 2-30%, алюминий 2-15%, тантал 0,2-20%, вольфрам 0,5-10%, гафний 0,2-6%, иттрий 0,001-5%, кремний 0,1-5%, никель - остальное до 100%, а термическую обработку проводят при температуре Т≤1,05Тзак, где Тзак - температура закалки сплавов, на которые наносят покрытия.

Первый слой покрытия, который наносят с использованием сплава на основе никеля, обычно имеет толщину 10-80 мкм. Нанесение покрытий на основе никеля может быть реализовано довольно большим числом методов, например плазменного напыления, электронно-лучевого напыления, электродугового катодного напыления, магнетронного напыления, вакуумно-плазменной технологии высоких энергий и т.д.

Метод плазменного напыления, при котором покрытие формируется из мелких расплавленных частиц, которые переносятся на поверхность при распылении плазмой проволоки, стержней или из порошка сплава для покрытия. В потоке плазмы частицы порошка нагреваются примерно до 10000 К, расплавленные частицы падают на поверхности деталей, растекаются и кристаллизуются. Покрытие формируется путем последовательной укладки деформирующихся частиц. Плазменное напыление может осуществляться в вакууме или на воздухе. В качестве плазмообразующих газов могут быть использованы аргон, гелий, водород или азот. При использовании этого метода детали нагревают плазменным пистолетом до 550-1100oС. Скорость потока плазменного газа (80% аргона + 20% водорода) достигает 2М. Плотность покрытия достигает 99%. Структура покрытия - субмелкозернистая.

Электронно-лучевое напыление осуществляется испарением сплава покрытия путем бомбардировки его потоком электронов. Испарившийся сплав конденсируется на поверхности детали. Покрытие формируется из парового потока, который состоит из нейтральных атомов. Скорость испарения составляет примерно 7•10-3(г c-1•см2). Скорость роста толщины слоя достигает 250-300 (нм•c-1). Кристаллы покрытия растут преимущественно в направлении, перпендикулярном покрываемым поверхностям, и образуют столбчатую структуру. Для увеличения плотности покрытия его подвергают обработке стеклянными шариками и затем рекристаллизационному отжигу при температуре 950-1000oС.

Лазерное напыление осуществляют с использованием энергии лазера. Скорость роста толщины слоя составляет 5-10 (мм•c-1). Защита от окисления при напылении осуществляется использованием защитных газов, например аргона. Скорость потока частиц при напылении с помощью газового лазера достигает 8-10 (мм•c-1).

Приведенные методы позволяют облегчить процесс управления качественным и количественным составом покрытий, наносимых на сплавы, путем использования предварительно выплавленных слитков сплавов. Однако применение ряда методов, прежде всего электронно-лучевого, плазменного, электродугового катодного напыления слитков сплавов, имеет ряд недостатков, например:
- высокая пористость получаемых покрытий;
- неравномерность толщины покрытий, особенно при нанесении покрытий на детали сложной формы.

Этих недостатков лишены методы нанесения покрытий на основе алюминия, например методы диффузионного нанесения покрытий: газовое или шликерное, или порошковое алитирование, хромоалитирование, алюмосилицирование и т.д.

Новым направлением является создание и нанесение многокомпонентных высокотемпературных покрытий на базе последовательного нанесения покрытий на основе никеля и на основе алюминия.

Поэтому в заявляемом изобретении предлагается покрытие, первый слой которого наносится из сплавов на основе никеля, а второй слой - на основе алюминия. Нанесение второго слоя покрытия на основе алюминия позволяет увеличить содержание алюминия и обеспечить уплотнение покрытия путем устранения дефектов, сопутствующих процессу напыления сплава.

Для выравнивания покрытия по его толщине и формирования преимущественно двухфазной структуры покрытия из β и γ′-фаз проводят термическую обработку покрытия при температуре Т≤1,05Тзак, где Тзак - температура закалки сплавов, на которые наносят покрытие.

Сплав для нанесения покрытия на основе никеля легируют хромом, алюминием, танталом, вольфрамом, гафнием, иттрием и кремнием, что позволяет уменьшить скалывание оксидной пленки при изотермическом окислении.

Основное назначение хрома в сплаве состоит в обеспечении высокой жаростойкости при сравнительно низком содержании алюминия. С этой целью содержание хрома в сплаве должно быть не менее 2%. Такое содержание хрома обеспечивает достаточно высокие барьерные свойства покрытия, предотвращает рассасывание слоя при высокотемпературном окислении. В то же время содержание хрома в сплаве не должно быть выше 30%, так как при чрезмерно высоком содержании хрома заметно снижается сопротивление покрытия высокотемпературному окислению.

Алюминий в первом слое покрытия обеспечивает образование более 65% γ′-фазы в структуре покрытия и повышает однородность состава и структуры при двухстадийном формировании покрытия с последующей термической обработкой. Это позволяет существенно повысить сопротивление высокотемпературному окислению внутренней зоны покрытий и тем самым обеспечивает более высокую долговечность покрытия к газовой коррозии. Заметный эффект от введения алюминия в слой покрытия, с использованием сплава на основе никеля наблюдается при содержании алюминия в сплаве не менее 2%. При содержании алюминия более 15% ухудшается технологичность покрытия, снижается адгезия, повышается концентрация дефектов в указанном слое, которые сохраняются при последующем нанесении слоя покрытия на основе алюминия. В конечном итоге наблюдается снижение защитных качеств покрытия и ухудшение характеристик его долговечности.

Тантал обеспечивает увеличение жаропрочности слоя покрытия путем увеличения прочности атомных связей в структуре покрытия и является эффективным элементом торможения диффузии атомов из сплава в покрытие. Кроме того, тантал повышает сопротивление высокотемпературному окислению, в частности γ′-фазы, особенно при циклическом окислении. Содержание тантала в сплаве меньше 0,2% недостаточно для существенного изменения свойств покрытия, так как сопротивление высокотемпературному окислению изменяется незначительно, в то же время при использовании сплава с указанной совокупностью элементов концентрация тантала свыше 20% приводит к образованию хрупких фаз покрытия, что ухудшает характеристики его долговечности.

Вольфрам вводят в состав сплава для увеличения жаропрочности и жаростойкости слоя, торможения диффузии элементов, снижения температуры перехода покрытия из хрупкого в пластичное состояние при нагревании. Вольфрам содержится в покрытии во вторичных, твердых растворах. Положительный эффект от введения вольфрама достигается при содержании вольфрама в сплаве не менее 0,5%. При содержании вольфрама более 10% образуются топологически плотно упакованные фазы типа μ, что сопровождается резким уменьшением жаростойкости.

Гафний, иттрий и кремний в покрытии обеспечивают повышенную долговечность слоя при изотермическом и циклическом окислении путем улучшения сцепления оксидной пленки с металлическим покрытием как за счет известного "штифтового" механизма, так и за счет связывания примесей серы в тугоплавкие сульфиды и предотвращения тем самым образования полостей, наполненных газообразными оксидами серы, которые вызывают откалывание оксидной пленки в процессе окисления.

Усиление защитных свойств оксидной пленки достигается при введении гафния и кремния, соответственно не менее 0,2% гафния и не менее 0,1% кремния. Чрезмерное содержание гафния более 6% и кремния более 5% нежелательны, так как растворимость элементов в основных фазах покрытия ограничена, а образование дополнительных соединений ухудшает характеристики долговечности покрытия.

Положительный эффект от введения в сплав иттрия наблюдается при содержании иттрия в слое не менее 0,001%. Слишком большое содержание иттрия - более 5% нецелесообразно из-за уменьшения сопротивления высокотемпературному окислению, что связано с заметным увеличением количества оксида иттрия в слое покрытия.

Никель как основа покрытия выбран с целью обеспечения формирования слоя алюминидов никеля, которые обладают более высоким сопротивлением высокотемпературному окислению, по сравнению с алюминидами кобальта или железа.

Для придания покрытию требуемой прочности, а также для получения однородности состава и строения комбинированного покрытия по его толщине проводят термическую обработку покрытия. Термическую обработку покрытия, например диффузионный отжиг, проводят при температуре, не превышающей Т≤1,05Тзак, где Тзак - температура закалки сплавов, на которые наносят покрытия. При температурах термической обработки выше Т наблюдается рост зерна в покрытии, что приводит к уменьшению срока службы покрытий. Ограничение температур термической обработки вводится как из-за роста зерна, так и по причине существенного изменения химического состава покрытия, что связано с возрастающим растворением компонентов покрытия в сплавах и элементов сплавов в покрытии, а также усиливающимся испарением алюминия и хрома с поверхностного слоя покрытия в вакууме и образования структуры γ/γ′ с пониженными характеристиками жаростойкости.

Поскольку понятие "сплавы" принято трактовать как тела, образовавшиеся в результате затвердевания расплавов, состоящих из двух или нескольких компонентов (химически индивидуальных веществ), то в понятие сплавы могут быть включены и стали. Сплавы могут состоять либо только из металлов, либо из металлов с небольшим содержанием неметаллов (например, чугун и сталь - сплав железа с углеродом) - это металлические сплавы (см. Большой энциклопедический политехнический словарь. //Под редакцией А.Ю. Ишлинского. Научное издательство "Большая Российская энциклопедия", Москва, 1998 г., стр. 498).

На фиг.1 и фиг.2 приведены структуры комбинированных покрытий на сплавах ЖС32 и ЖС6У.

Примеры нанесения комбинированного защитного покрытия на сплавы ЖС32, ЖС26, ЖС6Ф, ЖС6У:
Пример 1.

Для получения комбинированного покрытия был подготовлен сплав, содержащий: хром 15%, алюминий 15%, тантал 20%, вольфрам 3,6%, гафний 1,8%, иттрий 0,8%, кремний 0,4%, никель - остальное до 100%.

Детали из сплавов ЖС32, ЖС26, ЖС6Ф и ЖС6У нагревали в вакууме до 900oС и наносили методом вакуумно-плазменного катодного напыления слой покрытий из сплава на основе никеля толщиной 10-60 мкм. По структуре полученный слой покрытия содержит легированный γ-твердый раствор на основе никеля и легированные частицы γ′-фазы. Покрытия имеют серый металлический цвет, достаточно высокую плотность и не содержат неметаллических включений. После этого детали подвергали хромоалитированию при температуре 1000oС в течение 12 часов. Затем проводили термовакуумную обработку при температуре 1210oС в течение 1 часа 15 мин. В результате получили комбинированное покрытие с мелкозернистой структурой, состоящее из β и γ′-фаз (фиг.1). Толщины полученных покрытий 20-80 мкм. Прочность покрытий составляла 830-860 МПа, а количество молекул кислорода, связанного в оксид с металлом на 1 м2 площади поверхности за 100 часов при 1150oС (привес жаростойкости покрытия), 8-10 г/м2.

Пример 2.

Для получения комбинированного покрытия был подготовлен сплав. содержащий: хром 15%, алюминий 8%, тантал 10%, вольфрам 3,6%, гафний 1,5%, иттрий 0,6%, кремний 0,3%, никель - остальное до 100%.

На первом этапе проводили вакуумно-плазменное напыление сплава на основе никеля при температуре 900oС в течение 80 минут на детали из сплавов ЖС32, ЖС26, ЖС6Ф и ЖС6У. На втором этапе проводили алитирование при температуре 1000oС в течение 3 часов и последующую термовакуумную обработку при температуре 1080oС в течение 16 часов. В результате получили термообработанные комбинированные покрытия с мелкозернистой структурой, состоящие из β и γ′-фаз (фиг.2). Прочность покрытий составляла 850-880 МПа, а привес жаростойкости покрытий за 100 часов при 1150oС 10-12 г/м2.

Пример нанесения комбинированного защитного покрытия на сталь 10ХН44МВТЮБР.

Пример 3.

Проводили напыление слоя сплава на основе никеля следующего состава, мас. %: никель - основа, хром 15, алюминий 8, тантал 6, вольфрам 4, гафний 2,0, кремний 1, иттрий 0,6 на сталь 10ХН44МВТЮБР. После напыления слоя в вакууме ионно-плазменным способом сталь алитировали при температуре 950oС в течение 3 часов. Затем проводили термическую обработку (закалку в масле и старение), получали покрытие толщиной 65-80 мкм. Структура покрытия представляет собой смесь вторичных твердых растворов, преимущественно с преобладанием моноалюминида никеля. На границе со сталью сформировался тонкий слой из частиц карбидной фазы. Испытание на жаростойкость при температуре 950oС показали высокую сопротивляемость покрытия окислению в воздушной среде (привес жаростойкости 8-10 г/м2 за 200 часов окисления). Прочность покрытия при испытании на чистый изгиб составляет 860-880 МПа.

Приведенные примеры подтверждают достижение технического результата, а именно повышение жаростойкости и жаропрочности покрытий по сравнению с прототипом. Так при нанесении первого слоя покрытия известным из прототипа сплавом на основе никеля следующего состава, мас.%: хром 30, алюминий 8, тантал 10, иттрий 1,5, никель - остальное до 100, нанесении второго слоя покрытия известным из прототипа составом на основе алюминия и последующей термической обработки полученного комбинированного покрытия получали покрытие с привесом жаростойкости покрытий за 100 часов при 1150oС 16-18 г/м2.

Способнанесенияпокрытийнасплавы,включающийпоследовательноенанесениеслояпокрытиясиспользованиемсплаванаосновеникеля,нанесениеслояпокрытиянаосновеалюминияитермическуюобработку,отличающийсятем,чтопринанесениислояпокрытиянаосновеникеляиспользуютсплавследующегосостава,мас.%:хром2-30,алюминий2-15,тантал0,2-20,вольфрам0,5-10,гафний0,2-6,иттрий0,001-5,кремний0,1-5,никельостальноедо100,атермообработкупроводятпритемпературеТ≤1,05Т,гдеТ-температуразакалкисплавов,накоторыенаносятпокрытие.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 52.
20.02.2019
№219.016.c0e3

Турбореактивный двухконтурный двигатель с форсажной камерой

Изобретение относится к авиастроению, в частности к турбореактивным двухконтурным двигателям с форсажной камерой. Турбореактивный двухконтурный двигатель с форсажной камерой включает компрессор высокого давления, турбину высокого давления и турбину низкого давления. Двигатель выполнен со...
Тип: Изобретение
Номер охранного документа: 0002369765
Дата охранного документа: 10.10.2009
01.03.2019
№219.016.ca2d

Способ обработки металлического сплава давлением

Изобретение относится к обработке давлением металлических сплавов, преимущественно, в виде слитков и может быть использовано при изготовлении изделий, в том числе ответственного назначения, в различных областях техники, например, в авиации, машиностроении. Сплав нагревают и деформируют за...
Тип: Изобретение
Номер охранного документа: 0002255122
Дата охранного документа: 27.06.2005
11.03.2019
№219.016.d67e

Способ изготовления колец

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и авиационной промышленности при изготовлении деталей ответственного назначения, преимущественно деталей газотурбинных двигателей. Производят поперечную осадку заготовки с получением пластины....
Тип: Изобретение
Номер охранного документа: 0002286862
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d6fa

Щеточное уплотнение

Изобретение относится к области машиностроения, в частности к устройствам для уплотнения зазора между подвижными относительно одна другой деталями, а именно к щеточным уплотнениям. Щеточное уплотнение зазора между выполненными с возможностью перемещения одна относительно другой деталями...
Тип: Изобретение
Номер охранного документа: 0002293894
Дата охранного документа: 20.02.2007
11.03.2019
№219.016.d6fc

Узел опоры газотурбинного двигателя

Изобретение относится к энергетическому и транспортному машиностроению, в частности к системам смазки подшипниковых опор газотурбинных двигателей, и может быть использовано для подачи масла в подшипники, например межроторные подшипники высокотемпературных авиационных газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002293193
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d716

Способ безоблойной штамповки детали

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке деталей типа корпусов арматуры газотурбинных двигателей. Деталь, имеющую внутреннюю полость, уступы и отростки с приливами, штампуют безоблойным методом по меньшей мере за два перехода. При этом...
Тип: Изобретение
Номер охранного документа: 0002292979
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d7c8

Обтекаемая конструкция

Изобретение относится к области прикладной гидрогазодинамики, в частности к системам для управления пограничным слоем, и может быть использовано, например, на летательных аппаратах, а также на судах и в трубопроводах. Техническим результатом изобретения является снижение гидравлического...
Тип: Изобретение
Номер охранного документа: 02218490
Дата охранного документа: 10.12.2003
11.03.2019
№219.016.d985

Способ изготовления крупногабаритной полимерной оснастки

Изобретение относится к способам изготовления крупногабаритной и другой оснастки из неметаллических материалов для производства на ней лемнискатных входов, коков обтекателей, обшивок, мотогондолл и т.д. Техническим результатом заявленного изобретения является снижение металлоемкости,...
Тип: Изобретение
Номер охранного документа: 0002375185
Дата охранного документа: 10.12.2009
11.03.2019
№219.016.da8f

Способ изготовления теплоизолирующего покрытия и композиционный материал для его осуществления

Изобретение относится к теплоизолирующим покрытиям. Описан способ изготовления теплоизолирующего покрытия элемента изделия, заключающийся в нанесении на поверхность элемента композиционного материала в виде суспензии фрагментов холста базальтового в водном геле и термообработке нанесенного...
Тип: Изобретение
Номер охранного документа: 0002364612
Дата охранного документа: 20.08.2009
10.04.2019
№219.017.0191

Смазка для заготовок при горячей или полугорячей обработке металлов давлением

Сущность: смазка содержит, мас. %: графит 12,5-25,0, оксид металла 7,5-12,0, натриевая соль фосфорной кислоты 3-7, силикат щелочного металла 2-5, карбонат щелочного металла 0,5-3, лигносульфонат 0,2-0,5, водорастворимый целлюлозный полимер 0,3-1,5, оксиэтилированный алкилфенол 0,5-2,0, вода...
Тип: Изобретение
Номер охранного документа: 02224011
Дата охранного документа: 20.02.2004
Показаны записи 1-10 из 15.
01.03.2019
№219.016.caa2

Способ производства заготовок из порошков жаропрочных никелевых сплавов

Изобретение относится к производству заготовок из порошков жаропрочных никелевых сплавов, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения. Предложен способ производства спеченных заготовок из порошков жаропрочных никелевых сплавов. Способ включает...
Тип: Изобретение
Номер охранного документа: 02224622
Дата охранного документа: 27.02.2004
27.04.2019
№219.017.3dda

Способ ремонта деталей машин

Изобретение относится к ремонту деталей машин, в частности к способам ремонта, может быть использовано в авиадвигателестроении, машиностроении и других областях техники для восстановления трущихся поверхностей цилиндрических деталей. На подготовленную к восстановлению поверхность ремонтируемой...
Тип: Изобретение
Номер охранного документа: 0002247014
Дата охранного документа: 27.02.2005
27.04.2019
№219.017.3dde

Способ ремонта топливного коллектора газотурбинного двигателя

Изобретение относится к способам ремонта деталей газотурбинных двигателей, в частности к способам ремонта топливных коллекторов газотурбинных двигателей, и может найти применение в авиадвигателестроении, судостроении, энергетическом машиностроении и других отраслях промышленности. В способе...
Тип: Изобретение
Номер охранного документа: 0002255285
Дата охранного документа: 27.06.2005
27.04.2019
№219.017.3de1

Способ изготовления осесимметричных деталей

Изобретение относится к области обработки металлов и сплавов давлением и может быть использовано при изготовлении крупногабаритных осесимметричных деталей ответственного назначения, например дисков для газотурбинных двигателей из многофазных жаропрочных сплавов, в том числе на основе никеля и...
Тип: Изобретение
Номер охранного документа: 0002254195
Дата охранного документа: 20.06.2005
27.04.2019
№219.017.3de2

Способ защиты поверхности лопатки

Изобретение относится к химико-термической обработке преимущественно жаропрочных никелевых сплавов. Может использоваться при изготовлении и ремонте лопаток стационарных энергетических установок и авиационных газотурбинных двигателей. Способ защиты поверхности лопатки в процессе горячего...
Тип: Изобретение
Номер охранного документа: 0002252110
Дата охранного документа: 20.05.2005
27.04.2019
№219.017.3de3

Способ получения графитированного материала

Изобретение предназначено для металлургической, авиационной промышленности, энергетики, полупроводниковой техники и может быть использовано при изготовлении электродов, уплотнений авиационных двигателей и получении особо чистых изделий. Кокс сланцевый смоляной измельчают до фракционного...
Тип: Изобретение
Номер охранного документа: 0002252190
Дата охранного документа: 20.05.2005
27.04.2019
№219.017.3de7

Способ литья металла в вакууме и устройство для его осуществления

Изобретение может быть использовано для производства сплавов на основе Ni, Fe, Al, изготовления из них отливок точным литьем в вакууме и при выплавке шихтовых заготовок. В плавильной печи создают электромагнитное поле, посредством которого расплавляют и перемешивают металл в тигле в условиях...
Тип: Изобретение
Номер охранного документа: 0002250153
Дата охранного документа: 20.04.2005
29.04.2019
№219.017.3fa9

Система суфлирования масляной опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор газотурбинных двигателей, в частности к системам суфлирования масляных опор ротора газотурбинного двигателя, и может быть использовано в авиадвигателестроении, машиностроении и других областях техники. В систему суфлирования масляной опоры ротора...
Тип: Изобретение
Номер охранного документа: 0002256810
Дата охранного документа: 20.07.2005
18.05.2019
№219.017.5570

Способ защиты участков поверхности детали

Изобретение относится к химико-термической обработке деталей и может быть использовано в авиакосмической технике, энергомашиностроении, электротехнике и других отраслях промышленности. Предложен способ защиты участков поверхности детали перед нанесением на деталь покрытия, включающий нанесение...
Тип: Изобретение
Номер охранного документа: 02232205
Дата охранного документа: 10.07.2004
18.05.2019
№219.017.55be

Способ нанесения покрытий на сплавы

Изобретение относится к области машиностроения и может быть использовано, например, для увеличения долговечности лопаток турбин газотурбинных двигателей или стационарных газовых турбин. Техническим результатом изобретения является повышение прочности покрытий и их стабильности. Способ включает...
Тип: Изобретение
Номер охранного документа: 02213802
Дата охранного документа: 10.10.2003
+ добавить свой РИД