×
27.04.2019
219.017.3dfd

СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок. Для повышения технологичности обработки за счет возможности формирования заданных величин остаточных напряжений в поверхностном слое детали, а также увеличения ресурса детали на деталь воздействуют импульсным магнитным полем с заданными параметрами. Перед воздействием на деталь импульсным магнитным полем измеряют величины σ остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где n≥3. Вычисляют среднюю величину σ остаточных напряжений из измеренных в n точках величин σ остаточных напряжений. Определяют величину Δσ=|σ-σ|, где σ - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k. Исходя из полученной величины Δσ задают параметры импульсного магнитного поля. 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок.

После завершения ряда операций механической обработки (фрезерование, точение, шлифование, протягивание и т.п.) в поверхностном слое обрабатываемых деталей, как правило, формируются растягивающие остаточные напряжения. Для уменьшения величин растягивающих остаточных напряжений деталь подвергают магнитоимпульсной обработке, включающей воздействие импульсным магнитным полем с заданными параметрами напряженности магнитного поля, частотой, длительности импульса и т.д.

Известен способ обработки детали (А.с. №1708872 А1, 30.01.1992, C21D 1/06), включающий воздействие на деталь импульсным магнитным полем с заданными параметрами: количество импульсов, по меньшей мере три, длительность одного импульса и паузы составляет 0,03-0,05 и 0,02-0,1 с, удельная мощность в импульсе 10-50 кВт/см2.

Недостатком данного способа является технологическая сложность получения упрочненного слоя в обрабатываемом материале из-за необходимости синхронизировать несколько технологических процессов и изготовлять специальную оснастку, а также данный способ не позволяет сформировать заданные величины остаточных напряжений в поверхностном слое детали.

Известен способ обработки детали, включающий воздействие на деталь импульсным магнитным полем с заданными параметрами (Патент РФ №2009210 С1, 15.03.1994, C21D 1/04) - прототип. В данном способе на деталь воздействуют магнитным полем напряженностью 8·105-2·106 А/м с частотой 700-800 Гц в течение 3/4-5/4π периода частоты.

Недостатками данного способа является то, что указанные диапазоны режимов магнитоимпульсной обработки могут быть эффективно применены только для инструментальных материалов, но недостаточны для широкой номенклатуры машиностроительных материалов (например, жаропрочные стали, титан и т.д.), а также данный способ не позволяет сформировать заданные величины остаточных напряжений в поверхностном слое детали, что уменьшает технологичность обработки, а также ресурс работы детали.

Все ранее известные методы обработки деталей, включающие воздействие на деталь импульсным магнитным полем, позволяют только уменьшить величины растягивающих остаточных напряжений, но не позволяют получить необходимые заданные величины остаточных напряжений в поверхностном слое детали, т.е. управлять величиной остаточных напряжений.

Технический результат заявленного изобретения - повышение технологичности обработки за счет возможности формирования заданных величин остаточных напряжений в поверхностном слое детали, а также увеличение ресурса работы детали.

Указанный технический результат достигается тем, что в способе обработки детали, включающем воздействие на деталь импульсным магнитным полем с заданными параметрами, перед воздействием на деталь импульсным магнитным полем измеряют величины σi остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где n≥3, вычисляют среднюю величину σcp остаточных напряжений из измеренных в n точках величин σi остаточных напряжений, определяют величину Δσ=|σзcp|, где σз - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k, и исходя из полученной величины Δσ задают параметры импульсного магнитного поля.

Выполнение перед магнитоимпульсной обработкой детали операций, а именно измерение величины σi остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где n≥3, вычисление средней величины σcp остаточных напряжений из измеренных в n точках величин σi остаточных напряжений, определение величины Δσ, позволяет назначить более точные по сравнению с используемыми в известных ранее методах магнитоимпульсной обработки параметры импульсного магнитного поля, а также позволяет осуществить формирование заданных величин остаточных напряжений (управлять величиной остаточных напряжений) в поверхностном слое детали. Все это ведет к повышению технологичности обработки, а также увеличению ресурса детали.

При магнитоимпульсной обработке в детали вследствие неоднородной кристаллической структуры возникают вихревые токи. Вихревые токи обуславливают магнитное поле и локальные микровихри, которые, в свою очередь, нагревают участки вокруг кристаллитов (монокристаллические зерна или коротенькие цепочки монокристаллов, не превратившиеся в кристаллы) напряженных блоков и неоднородностей структуры металла. Градиент теплового потока при магнитоимпульсной обработке тем выше, чем менее однородна микроструктура металла. В местах концентраций остаточных или усталостных напряжений, связанных с технологией производства, обработки или эксплуатации детали, теплота, наведенная вихревыми токами, частично уменьшает избыточную энергию составляющих кристаллитов. Вследствие этого повышается ударная вязкость, сопротивление усталости материала детали, что, в свою очередь, повышает износостойкость материала детали в зоне намагничивания.

Предложенный способ в отличие от известных ранее способов обработки детали, включающих магнитоимпульсную обработку, позволяет не только уменьшить или снять остаточные напряжения растяжения в поверхностном слое, но и сформировать в последнем заданную величину остаточных напряжений.

Воздействие магнитного поля на материал детали возможно обеспечить любым известным способом, в том числе, например, с помощью электромагнита или соленоида (индуктора), охватывающего необходимую зону обработки. В случае использования электромагнита обеспечивается его контакт с деталью в зоне обработки, в случае использования соленоида воздействие магнитного поля на материал детали осуществляется бесконтактно.

Параметры импульсного магнитного поля назначают исходя из величины Δσ и могут быть выбраны в следующих интервалах: напряженность магнитного поля 50-2000 кА/м, длительность импульса 0,003-10 с, частота 50 Гц - 1 кГц.

Глубину залегания k, на которой необходимо получить заданные остаточные напряжения, выбирают исходя из расчета силовой нагрузки и эксплуатационной прочности детали.

Среднюю величину σср остаточных напряжений вычисляют следующим образом:

где σi - величина остаточного напряжения в i-й точке на глубине залегания k в поверхностном слое детали;

n - количество точек поверхностного слоя детали на глубине залегания k, в которых измеряют величины σi остаточных напряжений, причем n≥3.

Величину Δσ определяют следующим образом:

Δσ=|σзcp|, где σз - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k.

Величину σз задают исходя из эксплуатационных и конструктивных особенностей деталей.

Примеры выбора параметров импульсного магнитного поля в зависимости от величины Δσ на заданной глубине залегания k, равной, например, 50 мкм, приведены в табл.1.

Табл.1
Δσ, МПаНапряженность магнитного поля, кА/мДлительность импульса, сЧастота, Гц
1001900850
25015501,5100
40011001180
5508000,02250
8003500,0041000

В настоящее время существуют десятки различных типов установок и устройств для магнитоимпульсной обработки инструмента и деталей машин, как опытно-экспериментальных («ИМПУЛЬС-83С», «Импульс-Универсал»), так и опытно-промышленных («Импульс-80Г», «Импульс-ФМ»). Для реализации предложенного способа обработки деталей может быть использована любая известная магнитоимпульсная установка, например ВНИМИ, ЭМО, МИУРИ, УМОИ-50, «Импульс-ЗМ», БУР-83, «Контакт» и т.д., каждая из которых является универсальной для проведения магнитной обработки как инструмента, так и различных деталей машин, изделий, конструкций и сборочных единиц. Данные установки имеют примерно одинаковую функциональную схему, но различаются конструктивно, наличием систем автоматического и электронного регулирования, напряженностью магнитного поля, назначением, технологией обработки и производительностью.

Выбор магнитоимпульсной установки для осуществления обработки зависит от конструктивных особенностей и физических свойств материала той партии деталей, которую необходимо подвергнуть обработке.

Технические характеристики некоторых экспериментальных и опытно-промышленных установок приведены в табл.2.

Табл.2
УстановкаМаксимальный ток в соленоиде, АНапряженность магнитного поля, кА/мМощность, кВтВнутренний диаметр соленоида, ммЧисло сменных соленоидов
УМОИ-30502001-2301
УМОИ-60Ш15020002-5704
«Импульс-ЗМ»15010003-5651
«Импульс-84М»15010002-10804
Бур-1505002-5701

Пример.

Измерения остаточных напряжений проводились механически по методу Давиденкова на автоматизированной установке. Образцы деталей (лопатки ГТД) из жаропрочного сплава ХН73МБТЮ, подвергнутые предварительным операциям точения и финишной обработки - полированию, имели шероховатость поверхности Ra=0,32-0,16 и среднюю величину σcp=300 МПа растягивающих остаточных напряжений из измеренных в 5 точках величин σi остаточных напряжений на глубине 50 мкм. Было определено, что для повышения сопротивления усталости (соответственно и увеличения ресурса) данных деталей необходимо сформировать на глубине 50 мкм заданные остаточные напряжения сжатия σз=-200 МПа. Определив величину Δσ=|σзср|=|-200-300|=500 МПа, назначили следующие параметры магнитоимпульсной обработки: напряженность магнитного поля 1800 кА/м и длительность импульса 0,01 с, частота 50 Гц. После проведения магнитоимпульсной обработки получили заданные величины остаточных напряжений σз, при этом значения шероховатости остались в пределах характеристик для деталей до магнитоимпульсной обработки Ra=0,32-0,16.

Проведенные после магнитоимпульсной обработки неоднократные испытания образцов деталей из сплава ХН73МБТЮ показали рост условного предела усталости на 20%.

Таким образом, предложенный способ обработки деталей позволяет сформировать в поверхностном слое деталей остаточные напряжения заранее заданных численных значений, не изменяя при этом топографии и параметров шероховатости обрабатываемой детали.

Способобработкидетали,включающийвоздействиенадетальимпульсныммагнитнымполемсзаданнымипараметрамидляформированияостаточныхнапряженийвповерхностномслое,отличающийсятем,чтопередвоздействиемнадетальимпульсныммагнитнымполемизмеряютвеличиныостаточныхнапряженийσнаглубинеkзалеганиявnточкахповерхностногослоядетали,гдеn≥3,вычисляютсреднюювеличинуσостаточныхнапряженийизизмеренныхвnточкахвеличинσ,определяютΔσ=|σ-σ|,гдеσ-заданнаявеличинаостаточногонапряжения,которуюнеобходимосформироватьвповерхностномслоедеталейнаглубинеk,иисходяизполученнойвеличиныΔσзадаютпараметрывоздействияимпульсногомагнитногополя.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 86.
20.02.2019
№219.016.bcc0

Способ изготовления щеточного уплотнения

Изобретение относится к уплотнительной технике, в частности к способам изготовления щеточных уплотнений, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники. Способ изготовления щеточного уплотнения, включающий намотку материала щетины на оправку из двух...
Тип: Изобретение
Номер охранного документа: 0002289742
Дата охранного документа: 20.12.2006
20.02.2019
№219.016.bcd7

Способ изготовления многослойного изделия из полимерных композиционных материалов

Изобретение относится к технологии изготовления многослойных изделий, в частности к способам изготовления многослойного изделия из полимерных композиционных материалов, и может быть использовано в машиностроении, энергетике, авиационной промышленности и других областях техники. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002285613
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.bee6

Способ регулирования сопла с управляемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к технологиям регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам регулирования сопла с управляемым вектором тяги. Такие сопла, как правило, оснащены приводным кольцом, управляющим сверхзвуковыми створками сопла, и гидроприводами управления со...
Тип: Изобретение
Номер охранного документа: 0002312244
Дата охранного документа: 10.12.2007
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d675

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники. В способе суфлирования масляной полости...
Тип: Изобретение
Номер охранного документа: 0002267625
Дата охранного документа: 10.01.2006
11.03.2019
№219.016.d681

Способ монтажа двигателя летательного аппарата

Изобретение относится к авиационной технике и может быть использовано для монтажа авиационных двигателей на летательных аппаратах. Способ монтажа двигателя 5 летательного аппарата включает расстыковку фюзеляжа на носовую 4 и хвостовую 3 части. При этом до регулировки положения оси двигателя...
Тип: Изобретение
Номер охранного документа: 0002286922
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d70e

Абсорбционный способ осушки и охлаждения продуктов сгорания углеводородных топлив

Изобретение относится к теплоэнергетике и может быть использовано в процессах утилизации теплоты продуктов сгорания углеводородных топлив. Абсорбционный способ осушки и охлаждения дымовых газов включает абсорбцию водяного пара из дымовых газов охлажденным раствором соли металла в воде,...
Тип: Изобретение
Номер охранного документа: 0002290254
Дата охранного документа: 27.12.2006
11.03.2019
№219.016.d802

Осевой компрессор газотурбинного двигателя

Изобретение относится к осевым компрессорам газотурбинных двигателей, в частности к защите компрессора газотурбинного двигателя от резонансных напряжений, и может быть использовано в авиадвигателестроении, энергетике и других областях техники, в которых используются газотурбинные двигатели....
Тип: Изобретение
Номер охранного документа: 0002342566
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d804

Межроторная опора газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, в частности к опорам двухроторных газотурбинных двигателей, и может быть использовано в авиадвигателестроении и других областях техники, где используют газотурбинные двигатели. Межроторная опора газотурбинного двигателя содержит вал, ротор...
Тип: Изобретение
Номер охранного документа: 0002342548
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
Показаны записи 1-10 из 39.
27.06.2013
№216.012.50cc

Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава

Изобретение относится к технологии нанесения покрытий на лопатки газовых турбин из никелевых сплавов и может быть использовано в авиационной промышленности, машиностроении, энергетике и других отраслях промышленности. Предварительно обезжиренную лопатку размещают в камере промышленной...
Тип: Изобретение
Номер охранного документа: 0002486277
Дата охранного документа: 27.06.2013
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.9ca2

Способ восстановительной обработки деталей из жаропрочных никелевых сплавов

Изобретение относится к металлургии, а именно к восстановительной обработке деталей из жаропрочных сплавов на никелевой основе, и может быть использовано в авиационной и энергетической промышленности для продления ресурса работы деталей газотурбинных двигателей и установок. Способ...
Тип: Изобретение
Номер охранного документа: 0002610379
Дата охранного документа: 09.02.2017
10.05.2018
№218.016.3e11

Способ работы парового компрессора многоступенчатой опреснительной установки и устройство для его реализации

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают...
Тип: Изобретение
Номер охранного документа: 0002648323
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4daf

Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром. Термосжатие пара в этих паровых емкостях производится с помощью...
Тип: Изобретение
Номер охранного документа: 0002652369
Дата охранного документа: 25.04.2018
25.01.2019
№219.016.b3d2

Комбинированная установка опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике, а точнее к направлению опреснения морской воды и выработки электроэнергии. Установка содержит: газотурбинную установку 1 с компрессором, камерой сгорания и газовой турбиной, электрогенератор 2, паропровод 3 перегретого пара, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002678065
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d93e

Сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя

Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных...
Тип: Изобретение
Номер охранного документа: 0002354733
Дата охранного документа: 10.05.2009
22.04.2019
№219.017.3660

Способ отклонения вектора тяги воздушно-реактивного двигателя

Изобретение относится к авиадвигателестроению, в частности к регулируемым соплам воздушно-реактивных двигателей, выполненных с возможностью отклонения вектора тяги. Способ отклонения вектора тяги воздушно-реактивного двигателя заключается в том, что обеспечивают поступление газа во внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002296875
Дата охранного документа: 10.04.2007
22.04.2019
№219.017.3673

Установка для получения диффузионных покрытий в циркулирующей газовой среде

Изобретение относится к химико-термической обработке деталей и может найти применение в машиностроении, в авиационной промышленности и в других отраслях народного хозяйства. Для расширения функциональных возможностей установка для получения диффузионных покрытий в циркулирующей газовой среде...
Тип: Изобретение
Номер охранного документа: 0002305141
Дата охранного документа: 27.08.2007
+ добавить свой РИД