×
22.04.2019
219.017.3660

Результат интеллектуальной деятельности: СПОСОБ ОТКЛОНЕНИЯ ВЕКТОРА ТЯГИ ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиадвигателестроению, в частности к регулируемым соплам воздушно-реактивных двигателей, выполненных с возможностью отклонения вектора тяги. Способ отклонения вектора тяги воздушно-реактивного двигателя заключается в том, что обеспечивают поступление газа во внутреннюю полость сверхзвуковой части сопла, состоящей из створок, а расход газа, поступающего во внутреннюю полость сверхзвуковой части сопла, выбирают в зависимости от необходимого угла β отклонения струи на выходе из сопла. Изменяют давление во внутренней полости сверхзвуковой части сопла путем изменения угла раскрытия створок сверхзвуковой части сопла, выполненных с возможностью перемещения и с окнами, по меньшей мере, на части из них. Устанавливают величину суммарного угла раскрытия в соответствии с соотношением, защищаемым настоящим изобретением. Обеспечивают подвод атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла путем открытия окон, при этом количество и расположение открытых окон сверхзвуковой части сопла выбирают в зависимости от необходимого угла β отклонения струи на выходе из сопла. Изобретение позволяет повысить эффективность и надежность отклонения газового потока за счет упрощения конструкции, снижения затрат мощности на управление и повышения динамических характеристик устройства, а также повысить ресурс работы и снизить массу устройства и двигателя в целом. 2 з.п. ф-лы, 1 табл., 6 ил.

Изобретение относится к авиадвигателестроению, в частности к регулируемым соплам воздушно-реактивных двигателей, выполненных с возможностью отклонения вектора тяги.

Известен способ отклонения вектора тяги воздушно-реактивного двигателя (см. Попов Н.К., Соколов В.Д., Хвостов Н.И. «Сопла воздушно-реактивных двигателей с отклоняемым вектором тяги». - М.: Машиностроение, 1979. - стр.121-122), в котором отклонение струи на выходе из сопла осуществляют за счет механического поворота сверхзвуковой части сопла.

Недостатком данного технического решения является снижение надежности и эффективности управления струей газа из-за относительно низкого быстродействия, значительных шарнирных моментов, возникающих вследствие больших инерционных нагрузок и трения в подшипниковых узлах, уплотнениях и на подвижных створках сопла.

Известен также способ отклонения вектора тяги воздушно-реактивного двигателя (Попов Н.К., Соколов В.Д., Хвостов Н.И. «Сопла воздушно-реактивных двигателей с отклоняемым вектором тяги» - М.: Машиностроение, 1979. - стр.128-129) - прототип, в котором отклонение струи на выходе из сопла обеспечивают поступлением газа во внутреннюю полость сверхзвуковой части сопла, состоящего из створок, а количество газа, поступающего во внутреннюю полость сверхзвуковой части сопла, выбирают в зависимости от необходимого угла отклонения струи на выходе из сопла. В данном способе отклонение струи осуществляется за счет подачи газа из форсажной камеры во внутреннюю полость сверхзвуковой части сопла.

Недостатком этого способа является то, что вдуваемый газ, поступающий из форсажной камеры двигателя и расход которого зависит от необходимого угла отклонения струи и может достигать 20% от основного расхода газа газогенератора (при угле отклонения струи 15°), отрицательно влияет на газодинамические характеристики двигателя и может привести к отказу работы всего двигателя.

Технический результат заявленного способа - повышение эффективности и надежности отклонения газового потока за счет упрощения конструкции, снижения затрат мощности на управление и повышения динамических характеристик устройства, а также повышение ресурса работы и снижение массы устройства и двигателя в целом.

Для получения заявленного технического результата в предлагаемом способе отклонения вектора тяги воздушно-реактивного двигателя, включающем обеспечение поступления газа во внутреннюю полость сверхзвуковой части сопла, состоящего из створок, а расход газа, поступающего во внутреннюю полость сверхзвуковой части сопла выбирают в зависимости от необходимого угла β отклонения струи на выходе из сопла, изменяют давление во внутренней полости сверхзвуковой части сопла путем изменения угла раскрытия створок сверхзвуковой части сопла, выполненных с возможностью поворота и с окнами, по меньшей мере, на части из них, устанавливают величину суммарного угла раскрытия α21 створок сверхзвуковой части сопла, где α1 - угол раскрытия створок сверхзвуковой части сопла при осевом истечении струи на выходе из сопла и при равенстве давлений газа на срезе сопла и воздуха окружающей атмосферы, δ - дополнительный угол раскрытия створок сверхзвуковой части сопла, обеспечивают подвод атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла путем открытия окон, при этом количество и расположение открытых окон сверхзвуковой части сопла выбирают в зависимости от необходимого угла β отклонения струи на выходе из сопла.

При этом суммарный угол раскрытия α2 створок сверхзвуковой части сопла составляет 5°-50°.

Окна на створках сверхзвуковой части сопла открывают при помощи управляемых заслонок.

Повышение надежности и эффективности отклонения газового потока в заявленном способе достигается за счет снижения затрат мощности на управление благодаря уменьшению потерь расходуемого газа из газогенератора двигателя, улучшения динамических характеристик устройства благодаря повышенному быстродействию, отсутствию значительных шарнирных моментов, возникающих вследствие больших инерционных нагрузок и трения в подвижных узлах, уплотнениях.

Предложенное изобретение иллюстрируется чертежами, представленными на фиг.1-6, на которых изображены:

на фиг.1 - сопло до изменения угла установки створок сверхзвуковой части;

на фиг.2 - сопло после изменения угла установки створок сверхзвуковой части;

на фиг.3 - вариант выполнения сопла с несколькими окнами на створках сверхзвуковой части;

на фиг.4 показаны вид А и направление втекания атмосферного воздуха через открытые окна сверхзвуковой части сопла;

на фиг.5 - вариант выполнения сопла с одним окном на створках сверхзвуковой части;

на фиг.6 показаны вид Б и направление втекания атмосферного воздуха через открытые окна сверхзвуковой части сопла.

Принцип заявленного способа отклонения вектора тяги воздушно-реактивного двигателя основан на перераспределении давления по внутренней поверхности сверхзвуковой части сопла в результате взаимодействия основного газового потока со вторичной струей воздуха, поступающего из атмосферы. Образованное вторичной струей воздуха препятствие вносит возмущение в набегающий основной газовый поток и перестраивает характер его течения. Вследствие несимметричности этого течения относительно оси сопла появляется нормальная к оси сопла несбалансированная сила, которая и является, в конечном итоге, управляющим усилием.

Для реализации предложенного способа может быть использовано устройство отклонения вектора тяги воздушно-реактивного двигателя, которое включает сопло двигателя, выполненное с дозвуковой 1 и сверхзвуковой 2 частями. Сверхзвуковая часть 2 сопла содержит створки 3. Для обеспечения подвода атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла, по меньшей мере, часть створок 3 сверхзвуковой части 2 сопла имеет окна 4 (на чертежах показаны схематично), выполненные с возможностью их закрытия и открытия. Створки 3 сверхзвуковой части, которые имеют окна 4, содержат управляемые заслонки 5, имеющие собственные приводы 6.

Сопло может дополнительно содержать наружные створки 7, часть из которых имеет окна 8 (на чертежах показаны схематично), выполненные с возможностью их закрытия и открытия. Наружные створки 7 сопла, которые имеют окна 8, содержат управляемые с помощью приводов (на чертежах не показаны) заслонки 9.

При этом створка 3 сверхзвуковой части сопла может быть выполнена с одним окном 4 (см. фиг.5) или с несколькими окнами 4 (см. фиг.3) на ней. Наружная створка 7 сопла также может быть выполнена с одним окном 8 (см. фиг.3) или с несколькими окнами 8 (см. фиг.3) на ней.

Комбинация створок 3 сверхзвуковой части сопла, на которых могут быть выполнены окна 4, может быть различной, например окно или окна могут быть выполнены на каждой из створок, через одну створку, через две створки. Таким же образом могут быть выполнены окна 8 на наружных створках 7.

Использование данного устройства отклонения вектора тяги воздушно-реактивного двигателя позволяет повысить надежность и эффективность отклонения газового потока благодаря упрощению конструкции, повышению динамических характеристик устройства и ресурса его работы, а также снизить массу устройства и двигателя в целом за счет отсутствия в нем дополнительных клапанов, газоводов, наличие которых в других известных устройствах необходимо для обеспечения функционирования устройства по управлению газовым потоком.

Способ отклонения вектора тяги воздушно-реактивного двигателя осуществляется следующим образом.

Сначала изменяют угол раскрытия створок 3 сверхзвуковой части сопла до величины α21 (см. фиг.2), где α1 - угол раскрытия створок 3 сверхзвуковой части сопла при осевом истечении струи на выходе из сопла, δ - дополнительный угол раскрытия створок 3 сверхзвуковой части сопла. Дополнительный угол δ раскрытия створок сверхзвуковой части сопла равен сумме углов δ12. Угол раскрытия α1 створок сверхзвуковой части сопла при осевом истечении струи на выходе из сопла и при равенстве давлений газа на срезе сопла и воздуха окружающей атмосферы может составлять 4°-30°. При этом суммарный угол раскрытия створок сверхзвуковой части сопла α2 может составлять 5°-50°. В результате изменения угла раскрытия створок 3 сверхзвуковой части сопла происходит понижение давления pвн.бок, действующего на боковую поверхность (во внутренней полости) сверхзвуковой части сопла в зоне, расположенной между критическим сечением и выходным сечением сопла, которое становится ниже давления окружающей среды - атмосферного давления рн, действующего на внешнюю боковую поверхность сверхзвуковой части сопла в той же зоне. На этом режиме работы струя неустойчива, происходят «отрыв» струи от одной части боковой поверхности во внутренней полости сопла и «прилипание» струи к противоположной части боковой поверхности.

Затем при помощи управляемых заслонок 5 с приводами 6 открывают окна 4 на створках 3 сверхзвуковой части сопла для обеспечения подвода атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла. При этом количество и расположение открытых окон 4 на сверхзвуковой части сопла могут быть различны и зависят от необходимого угла β отклонения струи на выходе из сопла, который может составлять до 25°. Например, открывают окна на створках, расположенных последовательно друг за другом, составляющих половину от общего числа створок 3 сверхзвуковой части сопла. В результате открытия окон атмосферный воздух поступает во внутреннюю полость сверхзвуковой части сопла. На боковую поверхность во внутренней полости сверхзвуковой части сопла, противоположную открытым окнам, действует пониженное давление рвн.бок, величина которого ниже атмосферного давления и составляет примерно 0,05...0,07 МПа (0,5...0,7 кг/см2). Разность давлений Δр=рнвн.бок, действующая на площадь Sбок боковой поверхности сверхзвуковой части сопла, создает боковую силу Рбок, действующую на двигатель и летательный аппарат. Сила Рбок является составляющей от общей тяги двигателя и может быть определена следующим образом:

Рбок=Δр·Sбок

или

Рбок=P·sinβ,

где Р - тяга двигателя, Рбок - боковая составляющая тяги, β - угол отклонения струи и вектора тяги.

Таким образом, поступающий во внутреннюю полость сверхзвуковой части сопла поток атмосферного воздуха воздействует на основную струю газа из двигателя и отклоняет ее на угол β.

Указанный диапазон суммарного угла раскрытия створок 3 сверхзвуковой части сопла α2, равный 5°-50°, является оптимальным диапазоном для эффективного управления летательным аппаратом за счет прилипания струи к боковой поверхности во внутренней полости сопла (эффект Коанда).

При α2<5° боковая составляющая тяги Рбок в этом случае составит всего 2% от тяги двигателя, а этого недостаточно для общего управления тягой летательного аппарата.

При α2>50° может возникнуть отрыв газового потока от боковой поверхности во внутренней полости сопла, что не позволит достичь газодинамического эффекта отклонения струи.

В таблице 1 приведены примеры величин углов α2, в зависимости от необходимого угла β отклонения струи на выходе из сопла.

Табл.1
Суммарный угол раскрытия створок сверхзвуковой части сопла α2Угол β отклонения струи на выходе из соплаPбок/P
5%
10°9%
30°15°26%
40°20°34%
49°24,5°41%

При наличии в устройстве наружных створок 7 сопла, имеющих окна 8, для обеспечения подвода атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла, одновременно с открытием окон 4, открывают окна 8 при помощи управляемых заслонок 9.

При этом количество и расположение открытых окон 8 на наружных створках 7 могут быть различны и зависят от необходимого угла β отклонения струи на выходе из сопла. Например, открывают окна на створках, расположенных последовательно друг за другом, составляющих половину от общего числа створок 7 сопла.

Пример.

Была поставлена задача отклонить вектор тяги воздушно-реактивного двигателя на угол β=15° при следующих исходных данных для двигателя:

- расход газа через сопло двигателя G=190 кг/с;

- давление газа на входе в сопло рГ*=4,2 кг/см2;

- температура газа на входе в сопло ТГ*=2100К;

- площадь критического сечения сопла FКР=0,57 м2.

В результате проведенных расчетов, выполненных численными методами, было установлено, что для отклонения вектора тяги воздушно-реактивного двигателя на угол β=15° при угле раскрытия α1 створок сверхзвуковой части сопла, равном 4°, величина суммарного угла раскрытия α2 створок сверхзвуковой части сопла должна составлять 15°. При этом для подвода атмосферного воздуха во внутреннюю полость сверхзвуковой части сопла необходимо открыть окна на створках, расположенных друг за другом и составляющих половину от общей боковой поверхности сверхзвуковой части сопла. Давление рвн.бок, действующее на боковую поверхность, противоположную открытым окнам, во внутренней полости сверхзвуковой части сопла, составило 0,5 кг/см2. Угол β отклонения струи на выходе из сопла и соответственно вектора тяги воздушно-реактивного двигателя составил 15°.

Применение предложенного способа отклонения вектора тяги воздушно-реактивного двигателя позволяет повысить эффективность и надежность управления газовым потоком за счет упрощения конструкции, снижения затрат мощности на управление и повышения динамических характеристик устройства, а также повысить ресурс работы и снизить массу устройства и двигателя в целом.

1.Способотклонениявекторатягивоздушно-реактивногодвигателя,включающийобеспечениепоступлениягазавовнутреннююполостьсверхзвуковойчастисопла,состоящейизстворок,арасходгаза,поступающегововнутреннююполостьсверхзвуковойчастисопла,выбираютвзависимостиотнеобходимогоуглаβотклоненияструинавыходеизсопла,отличающийсятем,чтоизменяютдавлениевовнутреннейполостисверхзвуковойчастисоплапутемизмененияуглараскрытияствороксверхзвуковойчастисопла,выполненныхсвозможностьюперемещенияисокнами,поменьшеймере,начастиизних,устанавливаютвеличинусуммарногоуглараскрытияα=α+δствороксверхзвуковойчастисопла,гдеα-уголраскрытияствороксверхзвуковойчастисоплаприосевомистеченииструинавыходеизсоплаиприравенстведавленийгазанасрезесоплаивоздухаокружающейатмосферы,δ-дополнительныйуголраскрытияствороксверхзвуковойчастисопла,иобеспечиваютподводатмосферноговоздухавовнутреннююполостьсверхзвуковойчастисоплапутемоткрытияокон,приэтомколичествоирасположениеоткрытыхоконсверхзвуковойчастисоплавыбираютвзависимостиотнеобходимогоуглаβотклоненияструинавыходеизсопла.12.Способотклонениявекторатягивоздушно-реактивногодвигателяпоп.1,отличающийсятем,чтосуммарныйуголраскрытияαствороксверхзвуковойчастисопласоставляет5-50°.23.Способотклонениявекторатягивоздушно-реактивногодвигателяпоп.1,отличающийсятем,чтоокнанастворкахсверхзвуковойчастисоплаоткрываютприпомощиуправляемыхзаслонок.3
Источник поступления информации: Роспатент

Показаны записи 1-10 из 86.
20.02.2019
№219.016.bcc0

Способ изготовления щеточного уплотнения

Изобретение относится к уплотнительной технике, в частности к способам изготовления щеточных уплотнений, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники. Способ изготовления щеточного уплотнения, включающий намотку материала щетины на оправку из двух...
Тип: Изобретение
Номер охранного документа: 0002289742
Дата охранного документа: 20.12.2006
20.02.2019
№219.016.bcd7

Способ изготовления многослойного изделия из полимерных композиционных материалов

Изобретение относится к технологии изготовления многослойных изделий, в частности к способам изготовления многослойного изделия из полимерных композиционных материалов, и может быть использовано в машиностроении, энергетике, авиационной промышленности и других областях техники. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002285613
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.bee6

Способ регулирования сопла с управляемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к технологиям регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам регулирования сопла с управляемым вектором тяги. Такие сопла, как правило, оснащены приводным кольцом, управляющим сверхзвуковыми створками сопла, и гидроприводами управления со...
Тип: Изобретение
Номер охранного документа: 0002312244
Дата охранного документа: 10.12.2007
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d675

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники. В способе суфлирования масляной полости...
Тип: Изобретение
Номер охранного документа: 0002267625
Дата охранного документа: 10.01.2006
11.03.2019
№219.016.d681

Способ монтажа двигателя летательного аппарата

Изобретение относится к авиационной технике и может быть использовано для монтажа авиационных двигателей на летательных аппаратах. Способ монтажа двигателя 5 летательного аппарата включает расстыковку фюзеляжа на носовую 4 и хвостовую 3 части. При этом до регулировки положения оси двигателя...
Тип: Изобретение
Номер охранного документа: 0002286922
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d70e

Абсорбционный способ осушки и охлаждения продуктов сгорания углеводородных топлив

Изобретение относится к теплоэнергетике и может быть использовано в процессах утилизации теплоты продуктов сгорания углеводородных топлив. Абсорбционный способ осушки и охлаждения дымовых газов включает абсорбцию водяного пара из дымовых газов охлажденным раствором соли металла в воде,...
Тип: Изобретение
Номер охранного документа: 0002290254
Дата охранного документа: 27.12.2006
11.03.2019
№219.016.d802

Осевой компрессор газотурбинного двигателя

Изобретение относится к осевым компрессорам газотурбинных двигателей, в частности к защите компрессора газотурбинного двигателя от резонансных напряжений, и может быть использовано в авиадвигателестроении, энергетике и других областях техники, в которых используются газотурбинные двигатели....
Тип: Изобретение
Номер охранного документа: 0002342566
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d804

Межроторная опора газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, в частности к опорам двухроторных газотурбинных двигателей, и может быть использовано в авиадвигателестроении и других областях техники, где используют газотурбинные двигатели. Межроторная опора газотурбинного двигателя содержит вал, ротор...
Тип: Изобретение
Номер охранного документа: 0002342548
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
Показаны записи 1-10 из 39.
27.06.2013
№216.012.50cc

Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава

Изобретение относится к технологии нанесения покрытий на лопатки газовых турбин из никелевых сплавов и может быть использовано в авиационной промышленности, машиностроении, энергетике и других отраслях промышленности. Предварительно обезжиренную лопатку размещают в камере промышленной...
Тип: Изобретение
Номер охранного документа: 0002486277
Дата охранного документа: 27.06.2013
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.aa59

Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата с большим сроком активного существования

Использование: в области электротехники при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите. Технический результат - повышение эффективности управления зарядом/разрядом...
Тип: Изобретение
Номер охранного документа: 0002611568
Дата охранного документа: 28.02.2017
10.05.2018
№218.016.3e11

Способ работы парового компрессора многоступенчатой опреснительной установки и устройство для его реализации

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают...
Тип: Изобретение
Номер охранного документа: 0002648323
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4daf

Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром. Термосжатие пара в этих паровых емкостях производится с помощью...
Тип: Изобретение
Номер охранного документа: 0002652369
Дата охранного документа: 25.04.2018
25.01.2019
№219.016.b3d2

Комбинированная установка опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике, а точнее к направлению опреснения морской воды и выработки электроэнергии. Установка содержит: газотурбинную установку 1 с компрессором, камерой сгорания и газовой турбиной, электрогенератор 2, паропровод 3 перегретого пара, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002678065
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d93e

Сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя

Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных...
Тип: Изобретение
Номер охранного документа: 0002354733
Дата охранного документа: 10.05.2009
22.04.2019
№219.017.3673

Установка для получения диффузионных покрытий в циркулирующей газовой среде

Изобретение относится к химико-термической обработке деталей и может найти применение в машиностроении, в авиационной промышленности и в других отраслях народного хозяйства. Для расширения функциональных возможностей установка для получения диффузионных покрытий в циркулирующей газовой среде...
Тип: Изобретение
Номер охранного документа: 0002305141
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3674

Способ получения защитного покрытия на деталях

Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, и может быть использовано в авиадвигателестроении, машиностроении, энергетике и других отраслях техники. На поверхность детали наносят, по меньшей мере, один металлический слой. Затем проводят алитирование...
Тип: Изобретение
Номер охранного документа: 0002305034
Дата охранного документа: 27.08.2007
+ добавить свой РИД