×
22.04.2019
219.017.3671

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СУММАРНОЙ ПРОПУСКНОЙ СПОСОБНОСТИ ВНУТРЕННИХ СКВОЗНЫХ КАНАЛОВ В ИЗДЕЛИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-диагностическим технологиям. Способ включает заполнение газом ресивера и продувку каналов изделия газом из ресивера через трубопровод, при этом ресивер заполняют газом до давления, обеспечивающего критический перепад между давлением в ресивере и давлением среды, в которую происходит истечение газа из изделия, измеряют в ресивере температуру газа, давление газа в начальный момент времени продувки и давление газа в конечный момент времени продувки и определяют темп изменения давления. Технический результат - повышение точности определения пропускной способности сквозных каналов в изделии и снижение трудоемкости способа. 1 ил.

Изобретение относится к контрольно-диагностическим технологиям, в частности к способам определения суммарной пропускной способности внутренних сквозных каналов, и может найти применение в машиностроении, авиадвигателестроении и других областях техники при оценке и регулировке суммарной пропускной способности внутренних сквозных каналов в изделиях, предназначенных для работы с газами, например, в охлаждаемых лопатках турбин, в теплообменных аппаратах и т.д.

Известен способ контроля пропускной способности внутренних сквозных каналов, включающий заполнение ресивера рабочей средой до заданного давления, нагрев изделия, пропускание через его каналы рабочей среды с переменным расходом и с температурой, не равной средней температуре нагрева изделия, измерение поля температур на поверхности изделия во время пропускания рабочей среды через его каналы, определение по результатам измерения поля температур производной от темпа изменения температуры по расходу рабочей среды и контролирование пропускной способности каналов по абсолютным величинам расхода рабочей среды (см. патент RU №2219531, кл. G01N 25/00, опубл. 20.12.2003).

Однако точно оценить суммарную пропускную способность каналов по данному способу не представляется возможным из-за больших погрешностей в определении конечных величин, кроме этого данный способ достаточно трудоемкий и требует применения дорогостоящего оборудования, в частности тепловизора.

Необходимость суммарной оценки пропускной способности каналов изделия обусловлена следующим. Так, например, для турбины газотурбинного двигателя необходимо из комплекта лопаток выбрать те, пропускная способность которых одинакова. Это необходимо для обеспечения идентичных условий охлаждения для всех лопаток, что обеспечивает более надежную эксплуатацию двигателя в целом. В противном случае, при установке на ротор турбины лопаток с разной пропускной способностью сквозных каналов реализуется различный режим охлаждения лопаток, приводящий к уменьшению ресурса работы лопаток и двигателя в целом.

Технический результат предложенного способа - повышение точности определения пропускной способности сквозных каналов в изделии и снижение трудоемкости.

Указанный технический результат достигается тем, что в способе определения суммарной пропускной способности внутренних сквозных каналов в изделии, включающем заполнение газом ресивера и продувку каналов изделия газом из ресивера через трубопровод, согласно изобретению ресивер заполняют газом до давления, обеспечивающего критический перепад между давлением в ресивере и давлением среды, в которую происходит истечение газа из изделия, продувку производят при сохранении критического перепада между давлением в ресивере и давлением среды, в которую происходит истечение газа из изделия, измеряют в ресивере температуру газа, давление газа в начальный момент времени продувки и давление газа в конечный момент времени продувки и определяют темп изменения давления по формуле

ΔР=ln(P1/P2)/(t2-t1),

где P1 - давление газа в ресивере в начальный момент времени продувки,

P2 - давление газа в ресивере в конечный момент времени продувки,

t1 - начальный момент времени продувки,

t2 - конечный момент времени продувки,

а в качестве параметра, характеризующего пропускную способность, используют эквивалентную площадь внутренних каналов изделия, определяемую по формуле

F=C·ΔР,

где ΔР - темп изменения давления,

С=V/mR√T - постоянная величина для конкретной системы,

V - объем ресивера,

m - постоянный для данной рабочей среды коэффициент,

R - газовая постоянная,

Т - средняя температура газа в ресивере.

Ресивер необходимо заполнять до давления, которое обеспечивает критический перепад между давлением в ресивере и давлением среды, в которую происходит истечение газа из изделия. Это упрощает расчет эквивалентной площади внутренних каналов изделия и, соответственно, повышает достоверность способа, так как в формулу для определения С - постоянной величины для конкретной системы входит величина q(λ) - газодинамическая функция, т.е. C=V/q(λ)mR√T. Однако q(λ) принимает величину, равную 1 при критическом перепаде между давлением в ресивере и давлением среды, в которую происходит истечение газа из изделия. При докритическом перепаде давления функция q(λ) не равна 1, и ее расчет достаточно сложен. Сложность расчета указанной величины приводит к значительным ошибкам при определении величины эквивалентной площади F и, соответственно, к снижению достоверности результатов.

Термин «критический перепад давления» известен из уровня техники (см., например, О.С.Сергель «Прикладная гидрогазодинамика». M.: Машиностроение, 1981, стр.246).

Средой, в которую происходит истечение газа на выходе из исследуемого изделия, как правило, является окружающее пространство с атмосферным давлением.

Задача определения эквивалентных величин, в частности эквивалентных площадей, актуальна в связи с тем, что позволяет рассчитать расход рабочего тела. Понятие «эквивалентная площадь» известно в уровне техники (см., например, а.с. СССР №712716, кл. G01M 3/24, опубл. 30.01.80; ГОСТ Р 51330.1 - 99 (МЭК 600-1-9879) «Наружные вентиляционные и разгрузочные устройства»).

На чертеже представлена схема установки для реализации способа.

Установка содержит ресивер 1 емкостью 50-300 литров и предельным давлением 8-100 кгс/см2 (емкость ресивера и предельное давление выбирают в каждом конкретном случае индивидуально в зависимости от исследуемого изделия). Ресивер 1 соединен с одной стороны с источником 2 рабочей среды, например воздушным компрессором, и с другой стороны соединен с трубопроводом 3, подсоединенным ко входу исследуемого изделия, в качестве которого выбрана, например, лопатка 4 турбины газотурбинного двигателя, в теле которой имеются внутренние сквозные каналы охлаждения. Во входном трубопроводе 3 расположен клапан 5. Площадь проходного сечения клапана 5 и трубопровода 3 в пять - десять раз больше эквивалентной площади внутренних каналов эталонного изделия, что позволяет пренебречь общими потерями давления от выходного сечения ресивера до входного сечения исследуемого изделия. Эквивалентную площадь внутренних сквозных каналов эталонного изделия рассчитывают при проектировании и при сдаточных испытаниях, например, путем продувки до десяти раз партии из 100 заведомо пригодных изделий. Для управления процессом испытания, сбором информации и ее обработки, а также для определения времени продувки предназначен компьютер 6. Для измерения давления используют датчик 7. Для измерения температуры в ресивере 1 используют, например, термометр 8 сопротивления.

Способ реализуется следующим образом.

Реализация способа рассмотрена на примере определения суммарной пропускной способности внутренних сквозных каналов охлаждаемой лопатки турбины газотурбинного двигателя.

Предварительно ресивер 1 объемом 50 литров заполняют воздухом до давления 8 кгс/см2. Данное значение давления выбрано из следующих условий: с одной стороны начальное давление воздуха должно обеспечить критический перепад между давлением в ресивере и давлением среды (в данном случае воздуха), в которую происходит истечение воздуха из изделия, а с другой стороны - достаточное время для проведения необходимого объема измерений. Критический перепад давления зависит от показателя политропы газа. Для воздуха указанная константа равна 1,4, и критический перепад давления реализуется при отношении давлений в ресивере к давлению в окружающей среде - воздуху больше величины 1,8. Предварительно окончание продувки устанавливают по достижении давления в ресивере 2-2,5 кгс/см2, что обеспечивает критический перепад давления на протяжении всего времени продувки. После заполнения ресивера 1 воздухом до давления 8 кгс/см2 открывают клапан 5 трубопровода 3 и осуществляют продувку каналов лопатки 4. После открытия клапана 5 фиксируют начальный момент времени t1 и измеряют давление P1 и температуру в ресивере 1. В процессе продувки непрерывно измеряют текущее время продувки, давление и температуру газа в ресивере 1. При давлении в ресивере 2-2,5 кгс/см2 автоматически, по команде компьютера 6, закрывают клапан 5. После закрытия клапана 5 фиксируют конечный момент времени продувки t2, измеряют давление Р2 и температуру Т газа в ресивере 1. Рассчитывают среднюю температуру Т газа в ресивере, как среднее арифметическое величин температур, измеренных во время продувки.

По формуле ln(Р12)/t2-t1, где Р1 - давление газа в ресивере в начальный момент времени продувки; Р2 - давление газа в ресивере в конечный момент времени продувки; t1 - начальный момент времени продувки; t2 - конечный момент времени продувки, - определяют темп изменения давления ΔР за время продувки. Затем рассчитывают эквивалентную площадь F каналов по формуле F=C·ΔР, где ΔР - темп изменения давления, С=V/mR√T - постоянная величина для конкретной системы; V - объем ресивера; m - постоянный для данной рабочей среды коэффициент (для воздуха m=0,0404); R - газовая постоянная; Т - средняя температура газа в ресивере.

Значения m и R для различных видов газов приведены, например, О.С.Сергель «Прикладная гидрогазодинамика». M.: Машиностроение, 1981, стр.201.

Темп изменения давления ΔР является величиной постоянной для случая истечения газа из закрытого ресивера при условии отсутствия теплообмена с окружающей средой в связи с тем, что давление в ресивере изменяется по экспоненциальному закону по времени продувки. Таким образом, результат определения эквивалентной площади сквозных каналов изделия не зависит от выбранного интервала расчета в диапазоне времени продувки.

Эквивалентную площадь F используют в качестве параметра, характеризующего суммарную пропускную способность каналов лопатки.

При контроле пропускной способности каналов рассчитанную эквивалентную площадь конкретного изделия сравнивают с заранее рассчитанной эталонной величиной. По результатам сравнения осуществляют оценку пригодности изделия. Так например, допустимая пропускная способность лопатки по ее эквивалентной площади находится в пределах от 0,95 до 1,05 от эталонной величины. Если эквивалентная площадь исследуемой лопатки попадает в данной диапазон, лопатка считается пригодной. Если эквивалентная площадь исследуемой лопатки меньше эталонного диапазона, то существует технология коррекции каналов. Если площадь исследуемой лопатки больше эталонного диапазона, то лопатка, как правило, бракуется.

Способ рассмотрен на примере охлаждаемой лопатки турбины газотурбинного двигателя. Для других изделий, работающих на газах, с внутренними сквозными каналами реализация способа аналогична.

Способопределениясуммарнойпропускнойспособностивнутреннихсквозныхканаловвизделии,включающийзаполнениегазомресивераипродувкуканаловизделиягазомизресиверачерезтрубопровод,отличающийсятем,чторесиверзаполняютгазомдодавления,обеспечивающегокритическийперепадмеждудавлениемвресивереидавлениемсреды,вкоторуюпроисходитистечениегазаизизделия,продувкупроизводятприсохранениикритическогоперепадамеждудавлениемвресивереидавлениемсреды,вкоторуюпроисходитистечениегазаизизделия,измеряютвресиверетемпературугаза,давлениегазавначальныймоментвременипродувкиидавлениегазавконечныймоментвременипродувкииопределяюттемпизменениядавленияпоформулеΔP=ln(P/P)/(t-t),гдеР-давлениегазавресиверевначальныймоментвременипродувки;Р-давлениегазавресиверевконечныймоментвременипродувки;t-начальныймоментвременипродувки;t-конечныймоментвременипродувки;авкачествепараметра,характеризующегопропускнуюспособность,используютэквивалентнуюплощадьвнутреннихканаловизделия,определяемуюпоформулеF=C-ΔP,гдеΔР-темпизменениядавления;C=V/mR√T-постояннаявеличинадляконкретнойсистемы;V-объемресивера;m-постоянныйдляданнойрабочейсредыкоэффициент;R-газоваяпостоянная;Т-средняятемпературагазавресиверезавремяпродувки.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 86.
22.04.2019
№219.017.3666

Катодный узел электронно-лучевой пушки, подогреватель катода и держатель подогревателя

Изобретение относится к электронно-лучевой сварке, а именно к устройствам электронно-лучевых пушек, в частности к высокотемпературным катодам косвенного накала с большой площадью эмиттирующей поверхности. Катодный узел электронно-лучевой пушки содержит катододержатель в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002314591
Дата охранного документа: 10.01.2008
22.04.2019
№219.017.3667

Устройство для получения отливок литьем по удаляемым моделям

Изобретение относится к литейному производству. Устройство содержит керамическую форму с прибыльной полостью, заливочную воронку, съемную крышку и керамическую трубку. Заливочная воронка расположена с наружной стороны съемной крышки. Крышка образует закрытую прибыльную полость. Один конец...
Тип: Изобретение
Номер охранного документа: 0002314892
Дата охранного документа: 20.01.2008
22.04.2019
№219.017.3668

Устройство для настройки комплекса бесконтактных измерений

Изобретение относится к измерительной технике и направлено на повышение точности настройки комплекса бесконтактных измерений при возможности учета перспективных искажений в процессе обработки результатов измерений. Этот технический результат обеспечивается за счет того, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002310815
Дата охранного документа: 20.11.2007
22.04.2019
№219.017.3669

Способ ремонта жаровой трубы камеры сгорания газотурбинного двигателя

Изобретение относится к области ремонта, а именно к способам ремонта жаровых труб камер сгорания газотурбинных двигателей с дефектами в виде трещин. Способ включает устранение дефекта в виде трещины путем ее механического удаления с образованием паза и заварку последнего. При этом паз получают...
Тип: Изобретение
Номер охранного документа: 0002311998
Дата охранного документа: 10.12.2007
22.04.2019
№219.017.366b

Способ изготовления технологической оснастки

Изобретение относится к литейному производству, в частности к технологии изготовления технологической оснастки высокой точности. С формообразующей поверхности формы для выплавляемых моделей изготавливают первый слепок. С формообразующей поверхности первого слепка снимают второй слепок. Второй...
Тип: Изобретение
Номер охранного документа: 0002313418
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.366c

Инструментальная головка

Изобретение касается электрохимических и электрофизических методов обработки металлов, в частности инструментальных головок для обработки цилиндрических или кольцевых деталей на электрохимических и электроэрозионных станках. Инструментальная головка содержит, по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002313428
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.3670

Способ неразрушающего контроля состояния объекта

Использование: для неразрушающего контроля состояния объекта. Сущность: заключается в том, что объект просвечивают рентгеновским или гамма-излучением, регистрируют интенсивности прошедшего сквозь объект излучения с помощью детектора, который контактирует с частью объекта, обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002304766
Дата охранного документа: 20.08.2007
22.04.2019
№219.017.3672

Станок для электрохимического шлифования

Изобретение относится к области машиностроения и может быть использовано при электроабразивном шлифовании. Станок содержит поворотный стол, рабочий инструмент, систему снабжения электролитом и систему управления источником тока. Предусмотрены также столы, выполненные с возможностью...
Тип: Изобретение
Номер охранного документа: 0002305026
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3673

Установка для получения диффузионных покрытий в циркулирующей газовой среде

Изобретение относится к химико-термической обработке деталей и может найти применение в машиностроении, в авиационной промышленности и в других отраслях народного хозяйства. Для расширения функциональных возможностей установка для получения диффузионных покрытий в циркулирующей газовой среде...
Тип: Изобретение
Номер охранного документа: 0002305141
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3674

Способ получения защитного покрытия на деталях

Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, и может быть использовано в авиадвигателестроении, машиностроении, энергетике и других отраслях техники. На поверхность детали наносят, по меньшей мере, один металлический слой. Затем проводят алитирование...
Тип: Изобретение
Номер охранного документа: 0002305034
Дата охранного документа: 27.08.2007
Показаны записи 21-30 из 56.
13.01.2017
№217.015.678b

Система полуавтоматической блокировки для ограниченных по длине межстанционных перегонов

Изобретение относится к железнодорожному транспорту и может быть использовано для регулирования движения поездов по перегону между соседними станциями. Система содержит на ограничивающих перегон станциях станционную аппаратуру рельсовых цепей, входной и выходной светофоры, блок аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002591554
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.ab61

Централизованная система контроля рельсовых цепей тональной частоты для высокоскоростного движения

Система относится к области железнодорожной автоматики и телемеханики, для управления высокоскоростным движением поездов на участках железнодорожных линий. Централизованная система контроля рельсовых цепей тональной частоты для высокоскоростного движения задействует посты электрической...
Тип: Изобретение
Номер охранного документа: 0002612053
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b4c8

Система контроля целостности состава

Изобретение относится к области железнодорожной автоматики и телемеханики. Система содержит установленные на локомотиве и в хвостовом вагоне комплекты, включающие в себя блок бортовой аппаратуры, микроконтроллер со встроенным приемопередающим модулем, бортовую приемную катушку и бортовой...
Тип: Изобретение
Номер охранного документа: 0002614158
Дата охранного документа: 23.03.2017
19.01.2018
№218.015.ffb3

Локомотивное устройство управления движением поезда

Изобретение относится к области управления движением на железных дорогах. Локомотивное устройство управления движением поезда содержит комплексное локомотивное устройство безопасности с модулями автоматической локомотивной сигнализации непрерывного типа и многозначной автоматической...
Тип: Изобретение
Номер охранного документа: 0002629582
Дата охранного документа: 30.08.2017
13.02.2018
№218.016.26a1

Устройство передачи управляющих команд автоматической локомотивной сигнализации в рельсовые цепи централизованной системы автоблокировки

Изобретение относится к области железнодорожной автоматики и телемеханики. Устройство включает управляющий блок сигналов взаимодействия компонентов системы интервального регулирования, первый выход-вход которого подключен через первый CAN-интерфейс к входу-выходу автоматизированного рабочего...
Тип: Изобретение
Номер охранного документа: 0002644049
Дата охранного документа: 07.02.2018
29.05.2018
№218.016.5389

Система интервального регулирования движения поездов

18 Изобретение относится к системам автоматики и телемеханики на железнодорожном транспорте для интервального регулирования движения поездов. Система включает размещенное на посту электрической централизации каждой станции устройство микропроцессорной электрической централизации и...
Тип: Изобретение
Номер охранного документа: 0002653672
Дата охранного документа: 11.05.2018
05.07.2018
№218.016.6b72

Система контроля местоположения поезда

Изобретение относится к области железнодорожной автоматики и телемеханики для определения и контроля позиции поезда на пути. Система включает волоконно-оптический кабель с герметичной заглушкой, проложенный вдоль пути на заданном расстоянии, центр управления движением поездов, в котором...
Тип: Изобретение
Номер охранного документа: 0002659913
Дата охранного документа: 04.07.2018
08.11.2018
№218.016.9a7e

Система распределенного контроля железнодорожного пути для высокоскоростного движения

Изобретение относится к средствам контроля железнодорожного пути. Система включает размещенное в головной части подвижного объекта устройство сбора данных, состоящее из микроконтроллера, с приемопередатчиком и блоком вывода информации. В хвостовом вагоне и головном вагоне размещен...
Тип: Изобретение
Номер охранного документа: 0002671796
Дата охранного документа: 06.11.2018
08.11.2018
№218.016.9a81

Система для управления работой сортировочных станций направления железнодорожной сети

Изобретение относится к железнодорожной автоматике для управления сортировочными станциями. Система включает компьютер АРМ, включающий процессор, блок (б.) ввода/вывода, монитор, б. памяти и б. обработки и выходных данных, б. моделирования поездной работы сортировочных станций, включающий б....
Тип: Изобретение
Номер охранного документа: 0002671790
Дата охранного документа: 06.11.2018
07.02.2019
№219.016.b7cf

Система обмена данными локомотивных систем с диспетчерским центром контроля и управления

Изобретение относится к области железнодорожной автоматики, телемеханики и связи для управления движением поездов. Система содержит размещенные в диспетчерском центре приемопередатчик и сервер, подключенный через блок преобразования сигнала к волоконно-оптической линии 5, уложенной вдоль...
Тип: Изобретение
Номер охранного документа: 0002678915
Дата охранного документа: 04.02.2019
+ добавить свой РИД