×
10.04.2019
219.017.0427

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИДРАТА ОКСИДА МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической технологии и может быть использовано в производстве катализаторов, сорбентов, осушителей. Способ получения гидрата оксида металла включает обработку соли металла газообразным аммиаком, выделение из суспензии гидратного осадка с образованием раствора, содержащего соль аммония, промывку гидратного осадка и сушку. В качестве соли металла берут соль алюминия, титана или циркония в виде кристаллогидратов с крупностью частиц 0,1-3,0 мм. Обработку солей металлов газообразным аммиаком ведут путем пропускания его через слой частиц кристаллогидратов до обеспечения рН водной вытяжки реакционной массы не менее 7. Полученную реакционную массу выщелачивают водой или раствором от промывки гидратного осадка с образованием суспензии, из которой и выделяют гидратный осадок. Изобретение позволяет получить целевой продукт с пониженным водосодержанием, снизить объем материальных потоков и энергоемкость процесса, повысить комплексность использования сырья и экологичность. 6 з.п. ф-лы.

Изобретение относится к области химической технологии и может быть использовано для получения гидратов оксидов металлов, преимущественно алюминия, титана, циркония, применяемых в производстве катализаторов, сорбентов, осушителей и т.п.

Основным методом получения гидрата оксида металла в настоящее время является его осаждение из раствора кислой соли металла под действием щелочного реагента, например раствора аммиака. При этом возникает проблема отделения от маточного раствора образующегося гельсодержащего гидратного осадка, имеющего повышенное водосодержание, при сопутствующем высоком расходе воды на его промывку, что приводит к значительным материальным потокам, высоким энергозатратам и образованию большого количества неутилизируемых разбавленных промывных растворов.

Известен способ получения гидрата оксида металла, в частности алюминия (см. патент РФ №2258035, МПК7 C01F 7/02, 2003), включающий обработку раствора основного сульфата алюминия AlOHSO4, содержащего 75 г/л Al2O3, в непрерывном режиме путем смешения с 25% водным раствором аммиака NH4ОН при рН 9,5-10,5 в течение 30-45 мин. Полученную суспензию фильтруют с отделением гидратного осадка, который подвергают автоклавной обработке в 5-7,5% растворе аммиака при рН 10-11 и температуре 135-145°С в течение 1-2 часов. Полученный осадок гидрата оксида алюминия Al2O3·nH2O псевдобемитной структуры отфильтровывают, промывают химически обессоленной водой и сушат.

Основными недостатками данного способа являются трудность отделения гельсодержащего гидратного осадка от раствора сульфата аммония при большом расходе воды на его промывку и значительные материальные потоки, обусловленные проведением аммиачной обработки соли металла в системе жидкость-жидкость. Кроме того, способ характеризует высокая энергоемкость по причине повышенной влажности гидратного осадка и необходимости использования автоклава, а также недостаточная экологичность вследствие образования большого количества неутилизируемых разбавленных растворов сульфата аммония.

Известен также способ получения гидрата оксида металла, в частности алюминия, принятый в качестве прототипа (см. патент СССР, №11489, МПК C01F 7/26, 1929), включающий прокаливание сульфата аммония с получением аммиака и бисульфата аммония, разложение раствором бисульфата аммония глиноземсодержащего материала, отделение алюминийсодержащего раствора фильтрацией, обработку его аммиаком, полученным при прокаливании, с образованием суспензии, выделение из нее осадка гидрата оксида алюминия фильтрацией, его промывку и сушку. Из раствора, полученного после отделения гидратного осадка, выделяют аммиак и сульфат аммония, который возвращают в начало процесса. Прокаливание сульфата аммония производят при обычном давлении или в вакууме, а разложение глиноземсодержащего материала осуществляют преимущественно в автоклаве под давлением при нагревании до 200°С, при этом разложение ведут в присутствии нейтрального сульфата аммония для более эффективного разложения глиноземсодержащего материала и отделения примесей железа.

Основными недостатками известного способа являются трудность отделения гельсодержащего гидратного осадка от раствора сульфата аммония при большом расходе воды на его промывку, высокая энергоемкость способа по причине повышенной влажности гидратного осадка и значительные материальные потоки, обусловленные проведением аммиачной обработки соли алюминия в системе газ-жидкость.

Настоящее изобретение направлено на достижение технического результата, заключающегося в интенсификации выделения гидрата оксида металла и в снижении энергоемкости способа за счет формирования структуры целевого продукта с пониженным водосодержанием при одновременном снижении объема материальных потоков. Кроме того, техническим результатом является получение аммонийного удобрения, что повышает комплексность использования сырьевых компонентов.

Технический результат достигается тем, что в способе получения гидрата оксида металла, включающем обработку соли металла газообразным аммиаком, выделение из суспензии гидратного осадка с образованием раствора, содержащего соль аммония, промывку гидратного осадка и сушку, согласно изобретению используют соль металла, взятую в виде кристаллогидрата с крупностью частиц 0,1-3,0 мм, в качестве соли металла берут соль алюминия, титана или циркония, обработку солей металлов газообразным аммиаком ведут путем пропускания его через слой частиц кристаллогидратов до обеспечения рН водной вытяжки реакционной массы не менее 7, а полученную реакционную массу выщелачивают водой или раствором от промывки гидратного осадка с образованием суспензии, из которой и выделяют гидратный осадок.

Достижению технического результата способствует то, что в качестве соли алюминия берут его сульфат, хлорид, нитрат, алюмокалиевые или алюмоаммониевые квасцы, в качестве соли титана берут сульфат титанила или сульфат титанила и аммония, а в качестве соли циркония берут сульфат циркония, нитрат циркония или хлорид цирконила.

Достижению технического результата способствует также то, что выщелачивание реакционной массы ведут при температуре не ниже 40°С в течение не менее 10 минут.

Достижению технического результата способствует также и то, что промывку гидратного осадка ведут с использованием режима противотока.

Достижению технического результата способствует и то, что раствор, содержащий соль аммония, обезвоживают с получением аммонийного удобрения.

Сущность изобретения заключается в следующем. Образование гидрата оксида металла происходит в результате гидролиза какой-либо его соли, механизм которого заключается в депротонировании аквакомплекса металла. Гидролиз в растворах всегда осложнен процессами полимеризации акваионов металла, происходящими во всем объеме реакционной массы, с образованием полиядерных гидроксокомплексов. При этом гидрат оксида металла формируется в виде неорганического полимерного соединения, содержащего в своей структуре повышенное количество воды. Содержащаяся в составе твердых кристаллогидратов вода так же, как и в растворах солей, координирована вокруг катиона металла. Поэтому при обработке газообразным аммиаком соли металла, взятой в виде твердого кристаллогидрата

MeaAb·nH2O, где Me - Al, Ti, Zr; A - сульфат-, хлорид-, нитрат-ион, происходит депротонирование аквакомплекса металла под действием аммиака в соответствии с уравнением

[Ме(H2O)к]b++NH3→[Ме(H2O)к-1OH](b-1)++NH4+ и т.д.,

где к - координационное число катиона металла.

Образующийся в ходе гидролиза катион аммония NH4+ связывается с кислотным анионом с образованием сульфата, хлорида, нитрата аммония или смеси солей. В отсутствие жидкой фазы нет условий для полимеризации акваионов металла, и поэтому процесс гидролиза идет в объеме каждой частицы с образованием высокодисперсного соединения, в котором число структурных молекул воды, приходящихся на один атом металла, составляет 1-3, что отвечает кристаллической форме соответствующего гидроксида. Помимо структурных молекул воды в составе гидрата оксида присутствует некоторое количество слабосвязанных молекул воды, что характерно для рентгеноаморфных соединений, которые не имеют строгой химической формулы. В процессе выщелачивания реакционной массы водным реагентом не происходит дополнительного обводнения сформированной дисперсной структуры гидрата оксида металла, что позволяет эффективно отделять гидратный осадок от концентрированного раствора соли аммония, который после обезвоживания представляет собой аммонийное удобрение.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Использование соли металла в виде кристаллогидрата позволяет провести процесс гидролиза с участием структурной воды кристаллогидрата в отсутствие жидкой фазы. Обработка кристаллогидрата газообразным аммиаком позволяет минимизировать расход водного реагента на выщелачивание образующейся в процессе гидролиза реакционной массы, что способствует снижению объема материальных потоков.

Выбор крупности частиц кристаллогидрата 0,1-3,0 мм обусловлен необходимостью обеспечения полноты протекания реакции гидролиза, поскольку в этом случае достигается хороший диффузионный контакт газообразного аммиака с поверхностью каждой взаимодействующей частицы кристаллогидрата.

Выбор в качестве соли металла солей алюминия, титана или циркония обусловлен тем, что гидраты оксидов этих металлов наиболее широко используются в производстве дефицитных катализаторов, осушителей и сорбентов. Предлагаемое изобретение может быть использовано и при получении гидратов оксидов других металлов, в частности никеля, кобальта, марганца, цинка, гафния, церия и др. Однако получение гидратов оксидов этих металлов может быть осложнено образованием аммиакатов.

Обработка солей металлов газообразным аммиаком до обеспечения рН водной вытяжки реакционной массы не менее 7 гарантирует полноту протекания реакции образования гидрата оксида металла. При более низких значениях рН, наряду с образованием гидратов оксидов металлов, происходит образование высокоосновных солей металлов. В случае сульфатных солей это приводит к загрязнению целевого продукта нерастворимыми основными сульфатами металлов. В случае хлоридных и нитратных солей повышается вязкость растворов аммонийных солей, что затрудняет выделение гидратного осадка из суспензии.

Выщелачивание реакционной массы водой или раствором от промывки гидратного осадка позволяет образовать суспензию, в которой твердая фаза представлена гидратом оксида соответствующего металла, а жидкая фаза - концентрированным раствором соли аммония, с обеспечением требуемой полноты растворения соли аммония. Кроме того, применение промывного раствора способствует повышению концентрации раствора соли аммония. Выделение гидратного осадка из полученной суспензии может быть осуществлено фильтрацией, которая протекает весьма интенсивно в силу того, что сформированная структура гидрата оксида металла является дисперсной и характеризуется пониженным водосодержанием.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в интенсификации выделения гидрата оксида металла и в снижении энергоемкости способа за счет формирования структуры целевого продукта с пониженным водосодержанием при одновременном снижении объема материальных потоков, а также в обеспечении возможности получения аммонийного удобрения.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Использование в качестве соли алюминия его сульфата, хлорида, нитрата, алюмокалиевых или алюмоаммониевых квасцов, в качестве соли титана сульфата титанила или сульфата титанила и аммония, а в качестве соли циркония сульфата циркония, нитрата циркония или хлорида цирконила способствует существенному расширению реагентно-сырьевой базы получения целевых гидратов оксидов металлов.

Выщелачивание реакционной массы при температуре не ниже 40°С в течение не менее 10 минут обеспечивает полное растворение соли аммония и получение ее концентрированного раствора.

Промывка гидратного осадка с использованием режима противотока позволяет сократить количество воды для промывки гидратного осадка.

Обезвоживание раствора, содержащего соль аммония, позволяет получить аммонийное удобрение.

Вышеуказанные частные признаки изобретения позволяют осуществить способ получения гидрата оксида металла в оптимальном режиме и повысить комплексность использования сырьевых компонентов.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами.

Пример 1. Берут 500 г сульфата алюминия в виде кристаллогидрата Al2(SO4)3·18H2O с крупностью частиц 0,1-1,5 мм и засыпают в цилиндрическую емкость с перфорированным днищем диаметром 170 мм, на котором размещена фильтровальная перегородка. Газообразный аммиак, полученный нагреванием до 70-85°С аммиачного раствора с концентрацией 25% NH3, подают в верхнюю часть емкости, а под перфорированным днищем с помощью вакуум-насоса создают разрежение, в результате чего газообразный аммиак проходит через слой частиц кристаллогидрата. Обработку газообразным аммиаком ведут до обеспечения рН водной вытяжки реакционной массы 7,2. Полученную реакционную массу в количестве 575 г выщелачивают 600 г воды при температуре 40°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1850 л/м2·час с выделением гидратного осадка и получением 673 г раствора, содержащего 33,1% сульфата аммония (NH4)2SO4.

Гидратный осадок промывают 7 порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 363,6 г сушат при 105°С до постоянной массы с получением 120 г гидрата оксида алюминия, содержащего 63,8% Al2O3. По данным рентгенофазового анализа (РФА) полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 2 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 225,1 г аммонийного удобрения, содержащего 99% (NH4)2SO4.

Пример 2. Берут 500 г сульфата титанила и аммония в виде кристаллогидрата (NH4)2SO4·TiOSO4·H2O с крупностью частиц 1,5-3,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,5. Полученную реакционную массу в количестве 605 г выщелачивают 850 г воды при температуре 50°С в течение 10 минут. Образовавшуюся суспензию фильтруют со скоростью 1525 л/м2·час с выделением гидратного осадка и получением 970 г раствора, содержащего 33,4% сульфата аммония (NH4)2SO4. Гидратный осадок промывают 9 порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 584 г сушат при 105°С до постоянной массы с получением 201,5 г гидрата оксида титана, содержащего 64,1%

TiO2. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 1,9 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 327,3 г аммонийного удобрения, содержащего 99% (NH4)2SO4.

Пример 3. Берут 500 г хлорида цирконила в виде кристаллогидрата ZrOCl2·8H2O с крупностью частиц 1,0-2,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,3. Полученную реакционную массу в количестве 548,5 г выщелачивают 500 г воды при температуре 60°С в течение 10 минут. Образовавшуюся суспензию фильтруют со скоростью 1650 л/м2·час с выделением гидратного осадка и получением 435,6 г раствора, содержащего 29,3% хлорида аммония NH4Cl. Гидратный осадок промывают 11 порциями воды по 400 г до полного отсутствия хлорид-иона в последней порции промывной воды. Промытый гидратный осадок массой 560,2 г сушат при 105°С до постоянной массы с получением 288,5 г гидрата оксида циркония, содержащего 66,2% ZrO2. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 0,94 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 129 г аммонийного удобрения, содержащего 98,9%

NH4Cl.

Пример 4. Берут 500 г хлорида алюминия в виде кристаллогидрата AlCl3·6Н2О с крупностью частиц 2,0-3,0 мм и обрабатывают газообразным аммиаком согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,1. Полученную реакционную массу в количестве 601,5 г выщелачивают 700 г воды при температуре 50°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1475 л/м2·час с выделением гидратного осадка и получением 774,2 г раствора, содержащего 32,2% хлорида аммония NH4Cl. Гидратный осадок промывают 9 порциями воды по 400 г до полного отсутствия хлорид-иона в последней порции промывной воды. Промытый гидратный осадок массой 622 г сушат при 105°С до постоянной массы с получением 164,8 г гидрата оксида алюминия, содержащего 64% Al2O3. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 2,77 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 251,4 г аммонийного удобрения, содержащего 99,1% NH4Cl.

Пример 5. Берут 500 г алюмокалиевых квасцов в виде кристаллогидрата K2SO4·Al2(SO4)3·24H2O с крупностью частиц 0,5-2,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,4. Полученную реакционную массу в количестве 545 г выщелачивают 900 г воды при температуре 60°С в течение 10 минут. Образовавшуюся суспензию фильтруют со скоростью 1510 л/м2·час с выделением гидратного осадка и получением 900,5 г раствора, содержащего 7,6% сульфата калия K2SO4 и 17,4% сульфата аммония (NH4)2SO4. Гидратный осадок промывают 8 порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 333,6 г сушат при 110°С до постоянной массы с получением 83,4 г гидрата оксида алюминия, содержащего 64,5% Al2O3. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 3 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 227,2 г аммонийного удобрения, содержащего 30,2% K2SO4 и 69%

(NH4)2SO4.

Пример 6. Берут 500 г алюмокалиевых квасцов в виде кристаллогидрата K2SO4·Al2(SO4)3·24H2O с крупностью частиц 0,5-2,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,4. Полученную реакционную массу в количестве 545 г выщелачивают 900 г раствора от промывки гидратного осадка по примеру 5, содержащего 17,4 г K2SO4 и 39 г (NH4)2SO4, при температуре 60°С в течение 10 минут. Образовавшуюся суспензию фильтруют со скоростью 1480 л/м2·час с выделением гидратного осадка и получением 900,5 г раствора, содержащего 9,1% сульфата калия K2SO4 и 20,6% сульфата аммония (NH4)2SO4. Промывку гидратного осадка осуществляют вначале противотоком с использованием второй, третьей и четвертой порций промывного раствора по примеру 5, затем шестью порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Общий расход промывной жидкости при этом составляет 3600 мл. Промытый гидратный осадок массой 333,6 г сушат при 110°С до постоянной массы с получением 83,4 г гидрата оксида алюминия, содержащего 64,5% Al2O3. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 3 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 283,5 г аммонийного удобрения, содержащего 30,4% K2SO4 и 69% (NH4)2SO4.

Пример 7. Берут 500 г алюмоаммониевых квасцов в виде кристаллогидрата (NH4)2SO4·Al2(SO4)3·24H2O с крупностью частиц 0,1-1,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,3. Полученную реакционную массу в количестве 524 г выщелачивают 750 г раствора от промывки гидратного осадка по примеру 6, содержащего 23,2 г K2SO4 и 52 г (NH4)2SO4, при температуре 50°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1550 л/м2·час с выделением гидратного осадка и получением 736 г раствора, содержащего 2,4% сульфата калия K2SO4 и 27,9% сульфата аммония (NH4)2SO4. Гидратный осадок промывают 9 порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 327,3 г сушат при 110°С до постоянной массы с получением 90 г гидрата оксида алюминия, содержащего 62,6% Al2O3. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 2,6 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 224,7 г аммонийного удобрения, содержащего 7,8% K2SO4 и 91,5% (NH4)2SO4.

Пример 8. Берут 385 г нитрата алюминия в виде кристаллогидрата Al(NO3)3·9H2O и 125 г сульфата титанила в виде кристаллогидрата TiOSO4·H2O с крупностью частиц 0,5-2,5 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,5. Полученную реакционную массу в количестве 525 г выщелачивают 630 г воды при температуре 40°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1620 л/м2·час с выделением гидратного осадка и получением 730,8 г раствора, содержащего 25,6% нитрата аммония NH4NO3 и 8,9% сульфата аммония (NH4)2SO4. Гидратный осадок промывают 8 порциями воды по 400 г до полного отсутствия нитрат-иона и сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 485,5 г сушат при 110°С до постоянной массы с получением 165 г гидрата оксидов алюминия и титана, содержащего 31,7% Al2O3 и 31,3% TiO2. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 1,9 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 253,7 г аммонийного удобрения, содержащего 73,8% NH4NO3 и 25,6% (NH4)2SO4.

Пример 9. Берут 265 г сульфата титанила и аммония в виде кристаллогидрата (NH4)2SO4·TiOSO4·H2O и 235 г нитрата циркония в виде кристаллогидрата Zr(NO3)4·5H2O с крупностью частиц 0,5-1,5 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,0. Полученную реакционную массу в количестве 530 г выщелачивают 750 г воды при температуре 45°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1715 л/м2·час с выделением гидратного осадка и получением 886 г раствора, содержащего 19,6% сульфата аммония (NH4)2SO4 и 15,2% нитрата аммония NH4NO3. Гидратный осадок промывают 7 порциями воды по 400 г до полного отсутствия сульфат-иона и нитрат-иона в последней порции промывной воды. Промытый гидратный осадок массой 593 г сушат при 110°С до постоянной массы с получением 211,1 г гидрата оксидов титана и циркония, содержащего 32,4% TiO2 и 31,9% ZrO2. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 1,8 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 310 г аммонийного удобрения, содержащего 56% (NH4)2SO4 и 43,5% NH4NO3.

Пример 10. Берут 250 г сульфата алюминия в виде кристаллогидрата Al2(SO4)3·18H2O, 100 г сульфата титанила в виде кристаллогидрата TiOSO4·H2O и 150 г сульфата циркония в виде кристаллогидрата Zr(SO4)2·4H2O с крупностью частиц 0,1-3,0 мм и обрабатывают согласно примеру 1 до обеспечения рН водной вытяжки реакционной массы 7,2. Полученную реакционную массу в количестве 521 г выщелачивают 700 г воды при температуре 45°С в течение 15 минут. Образовавшуюся суспензию фильтруют со скоростью 1745 л/м2·час с выделением гидратного осадка и получением 791,2 г раствора, содержащего 28,5% сульфата аммония (NH4)2SO4. Гидратный осадок промывают 8 порциями воды по 400 г до полного отсутствия сульфат-иона в последней порции промывной воды. Промытый гидратный осадок массой 557,5 г сушат при 110°С до постоянной массы с получением 211,8 г гидрата оксидов алюминия, титана и циркония, содержащего 18% Al2O3, 21,2% TiO2 и

24,6% ZrO2. По данным РФА полученный продукт является рентгеноаморфным. Количество удаленной влаги из промытого гидратного осадка в расчете на 1 кг целевого продукта составляет 1,6 кг. Полученный после выделения гидратного осадка раствор обезвоживают при температуре 115°С с получением 257,5 г аммонийного удобрения, содержащего 99,3% (NH4)2SO4.

Из вышеприведенных примеров видно, что предлагаемый способ получения гидратов оксидов алюминия, титана и циркония позволяет сформировать структуру целевого продукта с пониженным водосодержанием при одновременном снижении объема материальных потоков, что интенсифицирует выделение гидратов оксидов этих металлов и снижает энергоемкость процесса. В результате осуществления способа получают аммонийное удобрение, что повышает комплексность использования сырьевых компонентов. Настоящий способ относительно прост и может быть реализован с привлечением стандартного оборудования.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.03.2019
№219.016.e504

Способ получения диоксида церия

Изобретение относится к технологии получения соединений редкоземельных элементов, в частности к получению порошков диоксида церия, используемых в производстве катализаторов, присадок к дизельному топливу и других областях техники. В способе получения диоксида церия вводят раствор нитрата церия...
Тип: Изобретение
Номер охранного документа: 0002341459
Дата охранного документа: 20.12.2008
20.03.2019
№219.016.e728

Способ получения титаната двухвалентного металла

Изобретение относится к способам получения тонкодисперсных порошков титанатов щелочноземельных элементов или свинца, которые могут быть использованы для производства высоко- и низкочастотных керамических конденсаторов и других изделий радиоэлектронной промышленности. Способ получения титаната...
Тип: Изобретение
Номер охранного документа: 0002323882
Дата охранного документа: 10.05.2008
29.03.2019
№219.016.f0d7

Способ извлечения меди из сульфатсодержащей пыли медного производства

Изобретение относится к способам переработки отходов, в частности к способу извлечения меди из сульфатсодержащей пыли медного производства. Способ включает водное выщелачивание пыли с переводом меди и примесных элементов в раствор выщелачивания, отделение раствора от нерастворимого остатка,...
Тип: Изобретение
Номер охранного документа: 0002348714
Дата охранного документа: 10.03.2009
10.04.2019
№219.017.032c

Способ получения фотокаталитического диоксида титана

Изобретение может быть использовано при получении катализаторов на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений, патогенных флор. Способ получения фотокаталитического диоксида титана включает формирование реакционного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002317947
Дата охранного документа: 27.02.2008
10.04.2019
№219.017.0384

Способ поляризации монокристалла танталата лития

Изобретение относится к промышленному производству монокристаллов, полученных из расплава методом Чохральского, и может быть использовано при поляризации сегнетоэлектриков с высокой температурой Кюри, преимущественно танталата лития. На монокристалле танталата лития путем шлифовки формируют...
Тип: Изобретение
Номер охранного документа: 0002382837
Дата охранного документа: 27.02.2010
29.04.2019
№219.017.3f4f

Способ извлечения кобальта из хлоридных растворов, содержащих никель и примесные металлы

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения кобальта и никеля в хлоридных средах, образующихся при гидрохлоридной переработке природного и вторичного кобальтсодержащего сырья, а также для отделения кобальта от примесных компонентов в виде...
Тип: Изобретение
Номер охранного документа: 0002293129
Дата охранного документа: 10.02.2007
29.04.2019
№219.017.3f50

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии извлечения редкоземельных элементов из фосфогипса, получаемого при сернокислотной переработке апатитового концентрата на минеральные удобрения. Фосфогипс обрабатывают раствором серной кислоты с концентрацией 22-30 мас.% при Ж:Т=1,8-2,2 с извлечением...
Тип: Изобретение
Номер охранного документа: 0002293781
Дата охранного документа: 20.02.2007
29.05.2019
№219.017.644e

Способ переработки перовскитового концентрата

Изобретение предназначено для химической промышленности и может быть использовано при получении пигментного диоксида титана для красок, бумаги, эмалей и пластмасс. 1 кг перовскитового концентрата обрабатывают в атмосферных условиях концентрированной HCl при 90-100°С 10-20 ч до перевода в...
Тип: Изобретение
Номер охранного документа: 0002244726
Дата охранного документа: 20.01.2005
09.06.2019
№219.017.7a5a

Способ очистки сточных вод от фтора

Изобретение относится к сорбционно-осадительным способам очистки сточных вод от фтора и может быть использовано в горнодобывающей, металлургической, химической и других отраслях промышленности. Для осуществления способа проводят взаимодействие воды с церийсодержащим реагентом в виде сульфата...
Тип: Изобретение
Номер охранного документа: 0002382738
Дата охранного документа: 27.02.2010
10.07.2019
№219.017.ae88

Способ получения наноразмерного порошка сегнетоэлектрика

Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. Способ включает гидролиз соединения редкого металла с образованием осадка редкого металла. Осадок отделяют и суспендируют. В суспензию вводят соединение щелочного или...
Тип: Изобретение
Номер охранного документа: 0002362741
Дата охранного документа: 27.07.2009
Показаны записи 1-10 из 32.
10.05.2013
№216.012.3cd7

Способ автоматического управления процессом жидкостной экстракции в вибрационной колонне

Изобретение относится к способу автоматического управления процессом жидкостной экстракции в экстракционных колоннах, преимущественно вибрационных, и может быть использовано в гидрометаллургических, нефтехимических, радиохимических и других производствах. Способ включает в себя регулирование...
Тип: Изобретение
Номер охранного документа: 0002481142
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d57

Способ получения основного хлорида алюминия

Изобретение относится к области химии. Берут активный гидроксид алюминия с удельным объемом пор не менее 0,2 см/г и средним диаметром пор не менее 2,5 нм и обрабатывают его газообразной соляной кислотой при массовом соотношении HCl:HO в газовой фазе 1-15:1 до достижения молярного отношения...
Тип: Изобретение
Номер охранного документа: 0002481270
Дата охранного документа: 10.05.2013
10.07.2013
№216.012.53e8

Способ переработки фосфогипса

Изобретение может быть использовано в химической промышленности для получения концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента. Способ переработки фосфогипса включает выщелачивание фосфогипса, содержащего РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002487083
Дата охранного документа: 10.07.2013
20.09.2013
№216.012.6d53

Способ получения частиц твердого электролита lialti(po) (0,1≤x≤0,5)

Изобретение относится к способу получения частиц твердого электролита LiAlTi(PO) (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NHHPO или фосфорную кислоту, и второго раствора,...
Тип: Изобретение
Номер охранного документа: 0002493638
Дата охранного документа: 20.09.2013
20.11.2013
№216.012.8364

Радионуклидный источник излучения для радиационной гамма-дефектоскопии

Изобретение относится к области радиоактивных источников, в частности к радионуклидным источникам гамма-излучения, и может найти применение для радиационной гамма-дефектоскопии. Заявленный радионуклидный источник излучения для радиационной гамма-дефектоскопии включает герметичную капсулу из...
Тип: Изобретение
Номер охранного документа: 0002499312
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.9073

Способ получения шихты ниобата лития для выращивания монокристаллов

(57) Изобретение относится к способу получения соединений редких элементов, в частности шихты ниобата лития, которая может быть использована для выращивания монокристаллов методом вытягивания из расплава. В высокочистый ниобийсодержащий раствор вводят оксид магния в количестве, обеспечивающем...
Тип: Изобретение
Номер охранного документа: 0002502672
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.a9be

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способам выделения концентрата редкоземельных элементов (PЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической промышленности. В нагретую до 65-80°C экстракционную фосфорную...
Тип: Изобретение
Номер охранного документа: 0002509169
Дата охранного документа: 10.03.2014
10.07.2014
№216.012.dbe8

Способ переработки эвдиалитового концентрата

Изобретение относится к способу переработки эвдиалитового концентрата. Способ включает разложение концентрата минеральной кислотой с получением геля, термическую обработку геля, регенерацию кислоты, водное выщелачивание геля с переводом в раствор редкоземельных элементов (РЗЭ), а в...
Тип: Изобретение
Номер охранного документа: 0002522074
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e0bd

Способ очистки фосфатно-фторидного концентрата рзэ

Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты...
Тип: Изобретение
Номер охранного документа: 0002523319
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.eaeb

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002525947
Дата охранного документа: 20.08.2014
+ добавить свой РИД