×
10.05.2018
218.016.4765

Результат интеллектуальной деятельности: Способ определения параметров цели гидролокатором

Вид РИД

Изобретение

№ охранного документа
0002650835
Дата охранного документа
17.04.2018
Аннотация: Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружение цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. Предложен способ, содержащий излучение зондирующего сигнала длительностью Т на известной частоте , прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье БПФ, определение энергетического спектра каждого набора, производится последовательный анализ выделенных спектров, определяется коэффициент корреляции между ними, суммирование и после обработки определяются параметры обнаруженных эхосигналов. Таким образом, используя последовательные корреляционные свойства эхосигнала и отсутствия этих свойств у помехи, обнаруживает детерминированный сигнал на фоне распределенной помехи, а суммирование последовательных спектров повышает отношение сигнал/помеха. Это позволяет производить автоматическое обнаружение цели, определение ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружения цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех.

Известны способы измерения дистанции, основанные на приеме эхосигнала гидролокатора, изложенные, например, в книге Евтютов Е.С. и Митько В.Б. "Примеры инженерных расчетов в гидроакустике", Судостроение, 1981 г., с. 77. Способ содержит спектральный анализ этого процесса, детектирование спектральных составляющих, интегрирование огибающей и обнаружение сигнала при сравнении с порогом. В момент превышения выбранного порога определяется время задержки эхосигнала и по нему высчитывается дистанция до цели.

Аналогичный способ обнаружения эхосигнала и измерения дистанции изложен в книге B.C. Бурдика "Анализ гидроакустических систем". Судостроение, 1988 г. стр. 347 и содержит многоканальную по частоте фильтрацию, детектирование, выделение огибающей и сравнение с порогом. По каналу с максимальной амплитудой сигнала по частоте определяется смещение спектра, которое пропорционально радиальной скорости цели, а по моменту превышения выбранного порога определяется задержка эхосигнала и дистанция до цели.

При использовании цифровой техники в качестве спектрального анализа применяют процедуры быстрого преобразования Фурье (БПФ), которые обеспечивают выделение и измерение энергетического спектра шумового электрического процесса ("Применение цифровой обработки сигналов", М.: Мир, 1990 г., стр. 296). Перечисленные способы имеют точность измерения, дистанции определяемую длительностью зондирующего сигнала.

Известен способ обнаружения эхосигнала и измерения дистанции, рассмотренный в книге Л. Рабинера, Б. Гоулда «Теория и применение цифровой обработки сигналов», М.: Мир, 1978 г.

Способ содержит следующие операции: излучение зондирующего сигнала длительностью Т на известной частоте; прием эхосигнала в смеси с шумовой помехой гидроакустической антенной; дискретизацию электрического сигнала на выходе гидроакустической антенны; набор приемным устройством дискретизированных отсчетов длительностью Т; определение энергетического спектра с помощью процедуры быстрого преобразования Фурье БПФ; многократное повторение процедуры набора дискретизированных отсчетов длительностью Т через равные промежутки времени, и определение энергетического спектра каждого набора; выбор набора с максимальной энергией сигнала; принятие решение об обнаружении по набору с максимальной энергией сигнала.

Недостатком способа является большой объем вычислительных операций для определения факта наличия эхосигнала, для чего требуется предварительное определение помехи и выбор порога, определение превышения порога на каждом интервале временного набора. После этого производится анализ амплитудных значений и определение наличия эхосигнала по результатам последовательной обработки временной реализации по всей шкале дистанции. Выбор порога, как правило, производится при определении среднего значения амплитуд всех спектральных отсчетов, в число которых входят не только отсчеты, связанные с перемещением цели, но и отсчеты, связанные с реверберацией. Это приводит к тому, что порог принятия решения завышается и снижается вероятность обнаружения дальних целей, в особенности тех, которые перемещаются с малой скоростью и находятся в реверберационных отсчетах спектра. При обычном пороговом обнаружении эхосигнала при обработке по реализациям одиночного спектра большую сложность представляет обнаружение эхосигнала на фоне реверберационной помехи, обусловленной отражением от дна или отражением от поверхности в дальних зонах освещенности. При предъявлении такой информации оператору производят нормирование к максимальной амплитуде эхосигнала в спектре. Поскольку такие эхосигналы принадлежат реверберации, то эхосигналы от реальных целей, которые имеют меньшую амплитуду, могут быть пропущены.

Задачей изобретения является обеспечение автоматического обнаружения эхосигнала от малозаметной цели на фоне реверберационной помехи и автоматическое измерение параметров обнаруженной цели.

Поставленная задача решается тем, что в способ, содержащий излучение зондирующего сигнала длительностью Т на известной частоте Fизлуч, прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, последовательный набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье (БПФ), определение энергетического спектра каждого набора, определение порога Апор, введены новые признаки, а именно производят последовательный анализ выделенных спектров, для чего запоминают спектры и времена их определения, определяют коэффициент корреляции КК между каждыми двумя последовательными спектрами, если коэффициент корреляции меньше 0,5, то спектр с более ранним временем реализации удаляют, снова определяют коэффициент корреляции образовавшейся пары спектров, и так до тех пор, пока коэффициент корреляции не превысит 0,5, после чего запоминают все последовательные N спектров, коэффициенты корреляции между которыми превысили 0,5 и времена их определения, суммируют амплитуды спектров и нормируют их к числу N, сравнивают амплитуды нормированных спектральных отсчетов с порогом Aпор, выбирают спектральный отсчет с максимальной амплитудой Aмакс определяют частоту этого спектрального отсчета Fизм и сравнивают с частотой излученного сигнала Fизлуч, если FизмFизлуч+ΔF, где ΔF – смещение спектра за счет собственного движения, то принимают решение, что это движущаяся цель, и по значению Fизм определяют радиальную скорость цели Vдоп, если Fизм=Fизлуч+ΔF,то определяют ширину спектра по числу отсчетов достигших уровня 0,5 Aмакс и при ширине спектра ≤1/Т принимают решение, что это обнаружена неподвижная цель с радиальной скоростью Vрад=0, а дистанцию определяют по спектру с амплитудой Aмакс и максимальным коэффициентом корреляции.

Технический результат состоит в автоматическом обнаружении эхосигнала на фоне реверберационной помехи различного происхождения и автоматического определения параметров цели, в том числе ее радиальной скорости, дистанции и ширины спектра от цели по одной посылке.

Поясним достижение заявленного технического результата.

В практике работы гидролокаторов имеют место обнаружение локальных целей на фоне нормальной помехи и на фоне распределенной помехи, характеристики которой трудно прогнозировать.

Под локальными целями понимается подводный или надводный объект искусственного происхождения ограниченного размера (корабль, подводный аппарат, буй, контейнер и т.д.), отражение от которых происходит по нормали относительно падающей волны, а сама отражающая поверхность имеет отражающие плоскости существенно больше длины волны. Однако в реальных условиях имеется помеха, обусловленная реверберацией, либо наличием отражения сигнала, излученного гидролокатором, от звукорассеивающих слоев естественного и искусственного происхождения, так называемая распределенная помеха. Распределенная помеха затрудняет обнаружение локального объекта или приводит к повышению вероятности ложной тревоги. Классификация помех по характеру их возникновения рассматривается в книге Л.В. Орлова, А.А. Шаброва Гидроакустическая аппаратура рыбопромыслового флота. Л.: Судостроение, 1987 г., стр. 51-59. Как правило, интервал стабильности распределенной помехи существенно меньше, чем интервал стабильности эхосигнала, который определяется временем отражения от нормально расположенной поверхности, т.е. длительностью зондирующего сигнала.

Реверберационная помеха формируется суммированием отражений от большого числа отражателей, которые имеют различную длительность и случайную фазу, что так же образует отражение с малым по длительности стабильным состоянием.

Сущность предлагаемого способа заключается в следующем. Эхосигнал от локальной цели формируется на основе отражения энергии падающего зондирующего сигнала на цель по нормали относительно направления прихода зондирующего сигнала гидролокатора. При этом, как правило, это цели искусственного происхождения и в зависимости от принадлежности могут иметь форму шара, эллипсоида, куба, цилиндра, конуса, плоскости или их различных сочетаний. Это приводит к тому, что при отражении формируется регулярный фронт волны, характеристика которой стабильна на некотором пространственном интервале. (Е.А. Штагер, Е.В. Чаевский. Рассеяние волн на телах сложной формы. М.: Сов.радио, 1974 г.) Поскольку локальная цель находится в дальнем поле и имеет ограниченные размеры, то эхосигнал от такой цели представляет плоскую, мало искаженную волну, определяемую длительностью отраженного эхосигнала, на протяжении которой характеристики стабильно сохраняются за время распространения сигнала.

Распределенная помеха не имеет ярко выраженных когерентных свойств. В случае реверберации (см. Ольшевский В.В. Статистические свойства морской реверберации. М.: Наука, 1966 г.) эхосигнал формируется как сумма эхосигналов от элементарных отражателей, имеющих различную длительность и различную амплитуду, что приводит к искажению фронта плоской волны. В этой ситуации последовательные временные реализации не связаны между собой и имеют малую степень связи на протяжении длительности зондирующего сигнала. Эхосигнал от такой совокупности случайно расположенных отражателей будет представлять собой случайную совокупность амплитуд, которые независимы друг от друга и поэтому последовательны временные реализации также будут не связаны. Единственным способом, который позволит отличить наличие когерентной локальной цели является корреляционная обработка временных реализаций, принимаемых последовательно по дальности длительностью Т. Фронт волны, отраженный от распределенного отражателя, определяется случайным формированием отраженного фронта волны отдельных отражателей, и при приеме на интервале большем, чем интервал корреляции помехи, не будет иметь корреляционной связи. Таким образом, для реализации предлагаемого метода обработки необходим прием эхосигнала последовательно длительностями, равными Т, и определения степени корреляционной связи между последовательными спектрами. Измерение взаимно-корреляционной функции и определение коэффициента корреляции между процессами это известные операции, которые характеризуют степень схожести двух спектров и достаточно подробно используются в современной технике (Дж. Бендат, А. Пирсол. «Измерение и анализ случайных процессов». М.: Мир, 1971, стр. 44-47, стр. 196). Наличие коэффициента корреляции больше 0,5 между двумя последовательными спектрами, разнесенными на время большее, чем интервал корреляции помехи, говорит о том, что спектры принадлежат детерминированному эхосигналу. Поскольку время появления эхосигнала неизвестно, то обработку проводят последовательно, набирая входные временные реализации длительностью равной длительности излученного зондирующего сигнала. Для дальнейшей обработки потребуется значения помехи на входе обнаружителя, для чего по первым временным реализациям, которые еще не содержат эхосигнал от цели, определяется среднее значение амплитуд спектральных составляющих, на основании которого определяется порог Апор. При наборе часть эхосигнала может оказаться в двух последовательных наборах и тогда спектры в этих наборах будут одни и те же, а коэффициент корреляции между ними будет больше 0,5. Часто при обработке используют набор временных реализаций не последовательно, а некоторым перекрытием, и тогда коэффициент корреляции больше 0,5 будет не между 2-мя последовательными спектрами, а между большим числом последовательных спектров N. Поскольку число отсчетов спектра одинаковое и расположены они в одинаковом порядке, то этим обстоятельством можно воспользоваться и просуммировать амплитуды спектральных отсчетов, что приведет к увеличению отношения сигнал/помеха. Поскольку измерение помехи и определение порога проводилось по одной реализации спектра, поэтому амплитуды всех спектральных составляющих суммарного спектра следует разделить на число спектров N. Использование корреляционной обработки последовательных спектров и получение суммарного спектра, обеспечивает увеличение отношение сигнал/помеха существенно больше, чем в одиночном спектре. Сравнение с порогом и определение амплитуды спектрального отсчета и его номера является известной операцией, которая реализована во всех современных гидролокаторах. По номеру спектрального отсчета определяется радиальная скорость цели и расположение относительно частоты излучения Fизл. Значение частоты сдвига спектральной дискреты Fизм относительно частоты зондирующего сигнала определяет радиальную скорость Vдоп обнаруженной цели (Дж. Хортон «Основы гидролокации» Судпромгиз 1961 г. стр. 405). Эти операции являются известными и определяют наличие доплеровскрой скорости Vдоп. и Vрев. реверберационной составляющей скорости. По максимальному значению амплитуды Амакс доплеровской составляющей определяется временное положение спектра и по нему определяется дистанция известным методом. Если обнаружена только реверберационная составляющая, то по ней определяется дистанция Д только в том случае, когда ширина спектра реверберационной составляющей равна ширине спектра зондирующего сигнала, определяемого его длительностью Т. Предложенная процедура позволяет по одной посылке определять реальную локальную цель и нереальный распределенный объект, измерить радиальную скорость объекта и дистанцию до него с малой вероятностью ложной тревоги.

На фиг. 1 представлена блок схема устройства, реализующего предлагаемый способ. Устройство содержит гидролокатор 1, последовательно соединенный со спецпроцессором 2, в состав которого входят последовательно соединенные блок 3 набора временной реализации, блок 4 БПФ определения спектров, измерения tспек и Апор, блок 5 запоминания последовательных спектров и определения коэффициентов корреляции, блок 6 суммирования последовательных спектров, блок 8 обнаружения и определения параметров эхосигналов Vдоп., Vрев, ширина спектра, дистанции Д, блок 9 принятия решения.

Выход спецпроцессора 2 через блок 10 управления и отображения соединен с гидролокатором 1.

Операции предложенного способа целесообразно рассмотреть на примере работы реализующего его устройства.

По команде блока управления 10 гидролокатор 1 излучает зондирующий сигнал известной частоты Fизл и длительности Т. Это же гидролокатор принимает отраженный эхосигнала и передает его в спецпроцессор 2, где в блоке 3 производится последовательный набор временных реализаций длительностью Т.

Гидролокатор является известным устройством, который давно используется в отечественном приборостроении (А.Н. Яковлев, Г.П. Каблов. «Гидролокаторы ближнего действия». Л.: Судостроение. 1983).

В настоящее время практически вся гидроакустическая аппаратура выполняется на спецпроцессорах, которые преобразуют акустический сигнал в цифровой вид и производят в цифровом виде формирование характеристик направленности, многоканальную обработку и обнаружение сигнала, а также измерение амплитуд эхосигналов и временных отсчетов, а также принятие решения о цели. Эти вопросы достаточно подробно рассмотрены в литературе (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев. «Корабельная гидроакустическая техника». Санкт-Петербург. «Наука». 2004 г. Стр. 95-99, стр. 237-255).

Из блока 3 последовательные временные реализации поступают в блок 4, где производится определение энергетического спектра с использованием процедуры быстрого преобразования Фурье. Эта известная процедура, которая используется во всех современных систем обработки гидроакустической информации (см. там же). В этом же блоке могут быть реализованы процедуры измерения помехи, измерения времени поступления временных наборов и выбора порога Aпор. Последовательно выделенные спектры поступают в блок 5, где они запоминаются, и между соседними последовательными спектрами определяется коэффициент корреляции. Если коэффициент корреляции превысил значение 0,5, то эти спектры выделяются из всей последовательности и передаются в блок 6 суммирования последовательных спектров вместе со значениями коэффициентов корреляции, временами поступления временных наборов и параметрами помехи и Aпор. В блоке 7 производится обработка суммарного спектра отдельно по доплеровским каналам и по реверберационным каналам. Обнаруживаются спектральные отсчеты, которые превысили порог Aпор в доплеровских каналах и в реверберационных, определяются амплитуды максимальных отсчетов, определяется радиальная скорость и ширина спектра. Измеренные параметры эхосигнала передаются в блок 8 для принятия решения и определения дистанции.

Использование цифровой техники позволяет оперативно обрабатывать информацию любой сложности на основе разработанных алгоритмов. Эти вопросы достаточно подробно рассмотрены в книге «Применение цифровой обработки сигналов», под.ред. Оппенгейма, М.: Мир, 1980 г.

Таким образом, используя последовательные корреляционные свойства эхосигнала и отсутствие этих свойств у помехи, позволяет обнаруживать детерминированный сигнал на фоне распределенной помехи, а суммирование последовательных спектров повышает отношение сигнал/помеха, что позволяет считать задачу обнаружения эхосигнала и измерения параметров на фоне распределенной помехи решенной.

Способ определения параметров цели гидролокатором, содержащий излучение зондирующего сигнала длительностью Т на известной частоте F, прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, последовательный набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье (БПФ), определение энергетического спектра каждого набора, определение порога А, введены новые признаки, а именно производят последовательный анализ выделенных спектров, для чего запоминают спектры и времена их определения, определяют коэффициент корреляции КК между каждыми двумя последовательными спектрами, если коэффициент корреляции меньше 0,5, то спектр с более ранним временем реализации удаляют, снова определяют коэффициент корреляции образовавшейся пары спектров, и так до тех пор, пока коэффициент корреляции не превысит 0,5, после чего запоминают все последовательные N спектров, коэффициенты корреляции между которыми превысили 0,5 и времена их определения, суммируют амплитуды спектров и нормируют их к числу N, сравнивают амплитуды нормированных спектральных отсчетов с порогом А, выбирают спектральный отсчет с максимальной амплитудой А определяют частоту этого спектрального отсчета F и сравнивают с частотой излученного сигнала F, если F≠F+ΔF, где ΔF - смещение спектра за счет собственного движения, то принимают решение, что это движущаяся цель, и по значению F определяют радиальную скорость цели V, если F=F+ΔF, то определяют ширину спектра по числу отсчетов, достигших уровня 0,5 А, и при ширине спектра ≤1/Т принимают решение, что это обнаружена неподвижная цель с радиальной скоростью V=0, а дистанцию определяют по спектру с амплитудой А и максимальным коэффициентом корреляции.
Способ определения параметров цели гидролокатором
Способ определения параметров цели гидролокатором
Источник поступления информации: Роспатент

Показаны записи 31-40 из 97.
29.05.2018
№218.016.55dd

Устройство получения информации о шумящем в море объекте

Изобретение относится к области гидроакустики и предназначено для определения параметров объектов, шумящих в море. Заявлено устройство, содержащее многоэлементную акустическую приемную антенну шумопеленгования, блок формирования веера характеристик направленности в горизонтальной и вертикальной...
Тип: Изобретение
Номер охранного документа: 0002654365
Дата охранного документа: 17.05.2018
11.06.2018
№218.016.609c

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации систем при обнаружении и классификации объектов. Задачей изобретения является автоматическое обнаружение эхо-сигналов от объектов искусственного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002657121
Дата охранного документа: 08.06.2018
25.06.2018
№218.016.6575

Система и способ измерения акустических характеристик антенн с помощью подводного аппарата

Изобретение относится к области гидроакустики и может быть использовано для измерения полевых акустических характеристик корабельных антенн. Для измерения полевых характеристик корабельных приемных и излучающих антенн на подводном аппарате (ПА) установлены две излучающие антенны (АИ1, АИ2) и...
Тип: Изобретение
Номер охранного документа: 0002658508
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.65a6

Способ измерения скорости движения цели гидролокатором

Способ измерения скорости движения цели гидролокатором, содержащий излучение зондирующего сигнала, прием эхосигнала статическим веером характеристик направленности, обнаружение эхосигнала, измерение дистанции, измерение направления на объект, в котором измеряют уровень изотропной помехи после...
Тип: Изобретение
Номер охранного документа: 0002658528
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.666d

Способ определения координат движущихся источников излучения пассивным гидролокатором

Изобретение относится к области гидроакустики и может быть использовано в пассивной широкоапертурной гидролокации, а также в плосковолновой гидроакустике, атмосферной акустике и пассивной радиолокации. При пассивной локации источников излучения используют протяженные приемные системы (ПС) и...
Тип: Изобретение
Номер охранного документа: 0002658519
Дата охранного документа: 21.06.2018
05.07.2018
№218.016.6b42

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации систем при обнаружении и классификации объектов. В способе обработки гидролокационной информации, содержащем излучение сигнала, прием отраженного эхо-сигнала,...
Тип: Изобретение
Номер охранного документа: 0002660081
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6d20

Способ определения глубины погружения объекта

Настоящее изобретение относится к области гидролокации и направлено на повышение эффективности определения основных параметров обнаруженной цели. Использование совместной обработки принятого эхосигнала по вертикальным и горизонтальным каналам позволит автоматически определять глубину погружения...
Тип: Изобретение
Номер охранного документа: 0002660292
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d32

Способ классификации эхо-сигнала гидролокатора

Настоящее изобретение относится к области гидроакустики и может быть использовано для обнаружения и классификации эхосигналов от объектов, при применении зондирующих сигналов средней длительности. Использование предлагаемого способа позволяет обнаруживать и классифицировать объект по одному...
Тип: Изобретение
Номер охранного документа: 0002660219
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e9f

Система шумопеленгования гидроакустического комплекса подводной лодки

Изобретение относится к гидроакустическим средствам освещения подводной обстановки и предназначена для установки на подводной лодке. Техническими результатами от использования предлагаемой системы шумопеленгования гидроакустического комплекса подводной лодки являются формирование полного...
Тип: Изобретение
Номер охранного документа: 0002660377
Дата охранного документа: 05.07.2018
12.07.2018
№218.016.6fb4

Система противоторпедной защиты гидроакустического комплекса подводной лодки

Изобретение относится к гидроакустическим средствам самообороны подводной лодки. Техническими результатами от использования предлагаемой системы противоторпедной защиты гидроакустического комплекса подводной лодки являются увеличение сектора обзора в горизонтальной плоскости до 360° и...
Тип: Изобретение
Номер охранного документа: 0002661066
Дата охранного документа: 11.07.2018
Показаны записи 31-40 из 71.
27.04.2016
№216.015.3780

Гидроакустический способ определения пространственных характеристик объекта на дне

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия. Способ содержит излучение зондирующего сигнала в момент времени t, после излучения измеряется...
Тип: Изобретение
Номер охранного документа: 0002582623
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.395a

Гидроакустический способ обработки рыбопромысловой информации

Использование: изобретение относится к области морского рыболовного промысла и может повысить эффективность процесса вылова рыбы с использованием гидроакустических средств. Сущность: гидроакустический способ обработки рыбопромысловой информации содержит обнаружение рыбного скопления...
Тип: Изобретение
Номер охранного документа: 0002582624
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5383

Гидролокационный способ обнаружения подводных объектов в контролируемой акватории

Изобретение относится к области гидроакустики и предназначено для автоматического обнаружения малоподвижных объектов. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство сигналами, принимают эхосигналы от...
Тип: Изобретение
Номер охранного документа: 0002593824
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5587

Способ измерения радиальной скорости объекта по его шумоизлучению

Изобретение относится к области гидроакустики, в частности к способам измерения радиальной скорости движения объекта. Способ заключается в следующем. С помощью антенны принимают сигнал шумоизлучения объекта, осуществляют дискретизацию принятого сигнала и измерение спектра сигнала по набранной...
Тип: Изобретение
Номер охранного документа: 0002593622
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5ff6

Гидроакустический способ измерения глубины погружения неподвижного объекта

Использование: настоящее изобретение относится к области гидролокации и предназначено для использования в станциях освещения ближней обстановки при измерении параметров обнаруженного объекта. Сущность: способ измерения глубины погружения, содержащий излучение двух последовательных во времени...
Тип: Изобретение
Номер охранного документа: 0002590932
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8811

Способ определения глубины погружения нижней точки айсберга

Изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры обеспечения навигационной безопасности при работе в условиях нахождения айсбергов. Способ определения глубины погружения нижней точки айсберга содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002603831
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.89fb

Способ автоматического обнаружения и классификации объекта в водной среде

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Техническим результатом предлагаемого технического решения является...
Тип: Изобретение
Номер охранного документа: 0002602759
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9cfa

Способ автоматического определения гидролокатором курсового угла обнаруженного объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для измерения координат обнаруженного объекта с использованием гидролокатора ближнего действия. Использование предлагаемого технического решения позволяет автоматически измерять курсовой угол обнаруженного объекта...
Тип: Изобретение
Номер охранного документа: 0002610520
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.ac1a

Способ определения дистанции гидролокатором

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения сигнала гидролокатора и, в частности, для повышения точности измерения дистанции при использовании зондирующих сигналов большой длительности. Использование предлагаемой процедуры измерений...
Тип: Изобретение
Номер охранного документа: 0002612201
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.c917

Способ автоматического определения параметров айсберга гидролокационным методом

Изобретение относится к области гидроакустики и может быть использовано в навигационных приборах (гидроакустических станциях) обнаружения ледяных образований (в том числе айсбергов) и оценки его характеристик. Способ предназначен для автоматического определения осадки айсберга для защиты...
Тип: Изобретение
Номер охранного документа: 0002619311
Дата охранного документа: 15.05.2017
+ добавить свой РИД