×
25.06.2018
218.016.65a6

Способ измерения скорости движения цели гидролокатором

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002658528
Дата охранного документа
21.06.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ измерения скорости движения цели гидролокатором, содержащий излучение зондирующего сигнала, прием эхосигнала статическим веером характеристик направленности, обнаружение эхосигнала, измерение дистанции, измерение направления на объект, в котором измеряют уровень изотропной помехи после излучения зондирующего сигнала, выбирают порог, определяют номера пространственных каналов N, в которых произошло превышение порога, измеряют времена обнаружения эхосигналов, определяют максимальную амплитуду обнаруженного эхосигнала A в каждом канале, сравнивают времена обнаружений этих амплитуд и при совпадении времен определяют номера пространственных каналов, в которых совпадение произошло, и если эти пространственные каналы являются соседними, принимают решение, что принятый эхосигнал от одного объекта, а курсовой угол объекта определяют по формуле где Δβ° - ширина характеристики пространственного канала, N - номер характеристики направленности, в котором измерена максимальная амплитуда эхосигнала, Ai - значение максимальной амплитуды эхосигнала в канале N, Ai±1 - значение максимальной амплитуды в соседних пространственных каналах N±1, где обнаружен эхосигнал в том же временном интервале, излучают второй и последующий зондирующий сигналы, определяют дистанцию Д, определяют где M - номер зондирующего сигнала, определяют величину изменения курсового угла ΔКУ=(КУ-КУ) и знак изменения курсового угла, определяют тангенциальную составляющую расстояния Д, пройденного целью за время MT, где M - число посылок при измерении, по формуле Д=Д SinΔКУ°, определяют тангенциальную скорость цели по формуле Vт=Д\МТ, определяют радиальную скорость цели по формуле Vp=Vт tgΔКУ°, а полную скорость определяют по формуле 1 ил.
Реферат Свернуть Развернуть

Настоящее изобретение относится к области гидроакустики и может быть использовано для автоматического измерения полной скорости движения объекта с использованием гидролокатора ближнего действия.

Все современные гидролокаторы, предназначены для измерения параметров движения обнаруженного объекта, к которым относится дистанция до объекта, скорость движения объекта и угловое положения объекта относительно направления движения гидролокатора, которое называется курсовым углом объекта. Известен гидролокатор, (А.С. Колчеданцев. Гидроакустические станции. Л.:Судостроение, 1982 г., стр. 54), в котором приведена структурная схема гидролокатора, определяющего дистанцию и радиальную составляющую скорости по величине изменения расстояния за время между двумя циклами излучение-прием.

Недостатком данного аналога является то, что дистанция и радиальная скорость измеряется оператором по положению отметки на индикаторе отображения, тангенциальная составляющая скорости и полная скорость не определяется.

Известны гидролокаторы, которые позволяют за один цикл излучения-приема вести наблюдение за объектами, находящимися в секторе 360°. Для этого они формируют статический веер характеристик направленности. В этом случае направление на цель определяется не изменением положения антенны, а шириной характеристики направленности статического веера (там же, стр. 63) и ее положением относительно направления движения. Способ, реализованный в гидролокаторе кругового обзора, содержит следующие операции: излучение зондирующего сигнала, прием эхосигнала, обнаружение объекта, измерение дистанции, измерение радиальной скорости объекта, измерение курсового угла объекта по номеру пространственного канала, связанного с характеристикой направленности.

Недостатком данного способа является то, что направление на цель определяется оператором по номеру характеристики направленности (пространственного канала), ширина которой может быть значительной и именно ширина определяет точность измерения курсового угла цели. Кроме того, тангенциальная составляющая скорости цели не определяется и полная скорость цели так же не определяется.

Известна «Система активной гидролокации» по патенту РФ №2393503, содержащая излучающую и приемную акустические антенны, последовательно соединенные устройство формирования зондирующего сигнала, устройство формирования характеристик направленности в излучении, генераторное устройство, последовательно соединенные устройство формирования характеристик направленности системы гидролокации (ГЛ) в приеме и устройство обработки эхосигналов от цели, также содержащая устройство измерения дистанции до цели, устройство измерения радиальной составляющей скорости цели (ВИР), последовательно соединенные устройство формирования характеристик направленности системы шумопеленгования (ШП), устройство обработки сигналов системы ШП, устройство измерения пеленга на цель системы ШП и блок определения величины изменения пеленга (ВИП), также содержащая последовательно соединенные блок определения общей тангенциальной составляющей скорости и блок определения тангенциальной составляющей скорости цели, также содержащая блок определения скорости цели, блок определения курса цели и блок связи ГАС с системами корабля.

В этой системе гидролокации реализована следующая последовательность операций: излучение зондирующего сигнала, прием эхосигнала, измерение дистанции, измерение направления на цель по пространственному положению отметки эхосигнала на индикаторе, прием сигнала шумоизлучения, определение пеленга на цель в режиме шумопеленгования, определение величины изменения пеленга за фиксированное время наблюдения, определение тангенциальной составляющей скорости цели по данным шумопеленгования, определение полной скорости цели, определение курсового угла движения цели.

Это техническое решение является наиболее близким аналогом и может быть принято в качестве прототипа.

Недостатком данного технического решения является то, что тангенциальная составляющая скорости цели определяется оператором по величине изменения пеленга в режиме шумопеленгования, которое требует значительного времени наблюдения и наличие шумоизлучения цели, что в большинстве случаев неприемлемо, поскольку сигнал шумоизлучения не всегда может быть обнаружен.

Задачей предлагаемого технического решения является обеспечение автоматического измерения тангенциальной составляющей скорости, радиальной составляющей скорости, полной скорости движения цели по данным гидролокации.

Для решения поставленной задачи в способ, содержащий излучение зондирующего сигнала неподвижным гидролокатором, прием эхосигнала статическим веером характеристик направленности (пространственных каналов при обработки), измерение уровня изотропной помехи после излучения зондирующего сигнала, выбор порога, определение номеров Ni пространственных каналов, в которых произошло превышение порога, измерение времен обнаружения эхосигналов, измерение дистанции, измерение радиальной скорости, измерение направления на цель введены новые признаки, а именно: определяют максимальную амплитуду обнаруженного эхосигнала Ai в каждом пространственном канале Ni, сравнивают времена обнаружений этих амплитуд и при совпадении времен определяют номера пространственных каналов, в которых совпадение произошло, и если эти пространственные каналы являются соседними, принимают решение, что принятый эхосигнал от одного объекта, а курсовой угол цели определяют по формуле где Δβ° - ширина характеристики пространственного канала, Ni - номер пространственного канала, в котором произошло превышение порога и измерена максимальная амплитуда эхосигнала, Ai - значение максимальной амплитуды эхосигнала в канале Ni, Ai±1 - значение максимальной амплитуды в соседнем пространственном канале Ni±1, где обнаружен эхосигнал в том же временном интервале, излучают второй и последующий зондирующий сигналы, в каждом цикле излучение-прием с номером M определяют дистанцию Дм, определяют курсовой угол цели где M - номер зондирующего сигнала, определяют величину изменения курсового угла ΔКУ=(КУ1-КУм), если ΔКУ=0, то измеренная радиальная скорость равна полной скорости, если ΔКУ не равно 0, то определяют тангенциальную составляющую изменения расстояния Дт, пройденного целью за время МТ, где T - длительность цикла излучение-прием, по формуле Дтм SinΔКУ°, определяют тангенциальную скорость цели Vт.ц по формуле Vт.цт/МТ, определяют радиальную скорость цели Vp.ц по формуле Vp.ц=Vтц tgΔКУ°, а полную скорость цели определяем как

.

Существо предлагаемого изобретения заключается в следующем. При работе гидролокатора измеряют дистанцию до цели и радиальную скорость цели как величину изменения расстояния за время между последовательными излучениями зондирующих сигналов, что характеризует скорость сближения гидролокатора и цели. Это справедливо, если цель движется непосредственно на гидролокатор и излучение зондирующего сигнала и прием эхосигнала, отраженного от цели по первой и второй посылке, совпадают с направлением движения. В случае если они не совпадают, возникает ошибка в определении радиальной скорости сближения, которая зависит от разности углов, под которыми происходило измерение дистанций. Поскольку в гидролокаторах прежних разработок измерение дистанции производилось оператором, то ошибка измерения радиальной скорости считалась незначительной и на нее не обращали внимания. Существующие цифровые методы обработки эхосигналов позволяют автоматизировать процесс измерения, повысить точность измерения радиальной скорости, тангенциальной составляющей скорости и полной скорости цели. Прежде всего, для этого необходимо автоматическое измерение направление приема эхосигнала с использованием статического веера характеристик направленности. Ширина характеристики направленности определяет погрешность измерения курсового угла обнаруженного объекта. В зависимости от скорости перемещения объекта его положение может изменяться относительно положения гидролокатора, что и будет определять погрешность измерения скорости объекта по отраженному эхосигналу. Если соседние характеристики направленности пересекаются на уровне 0,7 от максимума, то эхосигнал будет всегда обнаруживаться в двух характеристиках направленности с наибольшими амплитудами. Соотношения амплитуд эхосигналов будут определять положение объекта относительно этих характеристик. Если в одной характеристики эхосигнал обнаруживается на максимуме характеристики, то амплитуда эхосигнала будет максимальной, а в соседней характеристике амплитуда эхосигнала будет меньше. Если положение объекта будет находиться на пересечении двух характеристик направленности на уровне 0,7, то амплитуды эхосигналов будут равны Ai=Aj и тогда курсовой угол будет равен КУ°=NiΔβ°+0,5Δβ°, где Ni - номер характеристики направленности от направления движения, Δβ° - ширина характеристики направленности. Таким образом, по соотношению амплитуд в соседних характеристиках направленности можно автоматически оценивать курсовой угла обнаруженного объекта с погрешностью меньше, чем ширина характеристики направленности, и тем самым повысить точность измерения курсового угла по одной посылке. После чего производится определение величины изменения курсовых углов за время МТ, где T - время между излучениями, M - число излучений. Для дистанции Дм имеем ΔКУ=(КУ1-КУм), после чего можно получить дистанцию, пройденную объектом в тангенциальном направлении за время между M посылками, Дтм SinΔКУ° и тангенциальную составляющую скорости цели по формуле Vт.ц=Дт\МТ, тогда скорость сближения или радиальная составляющая скорости цели Vр.ц=Vт tgΔКУ° а полную скорость цели определяем как .

На фиг. 1 представлена блок схема устройства, реализующая предлагаемый способ.

Устройство (фиг. 1) содержит гидролокатор 1 с антеннами излучения и приема, который соединен со спецпроцессором 2, в состав которого входят последовательно соединенные блок 3 многоканальной обработки статического веера характеристик направленности, блок 4 обнаружения эхосигнала в каждом пространственном канале, блок 5 определения дистанции по каждому пространственному каналу, блок 6 определения курсового угла по каждому пространственному каналу, блок 7 сбора и идентификации информации, блок 8 определения тангенциальной составляющей скорости цели, определение радиальной составляющей скорости цели и определение полной скорости цели. Выход спецпроцессора 2 соединен со входом блока 9 отображения и управления, выход которого соединен со входом гидролокатора 1.

Заявленный способ целесообразно изложить на примере работы устройства, его реализующего.

Из блока 9 управления и отображения поступает сигнал в гидролокатор 1, который излучает сигнал в водную среду и принимает отраженные эхосигналы. Блок 1 - гидролокатор с антеннами приема и излучения являются известными устройствами, которые используются в прототипе и достаточно подробно изложены в литературе по гидроакустике (А.С. Колчеданцев. «Гидроакустические станции». Л.: Судостроение, 1982 г., «Справочник по гидроакустике», Л.: Судостроение, 1988 г.). Как правило, гидролокаторы имеют статический веер характеристик направленности в приеме. Принятые эхосигналы поступают на спецпроцессор 2 в блок 3 многоканальной обработки, где формируются цифровые последовательные временные реализации по каждой характеристики направленности и производится обработка принятых реализаций.

Блок 2 - цифровые спецпроцессоры являются известными устройствами, которые предназначены для осуществления конкретных алгоритмов обработки с использованием аппаратных решений и жесткой логикой вычислений. Их применение повышает быстродействие цифровых вычислительных систем в несколько раз, и в большинстве случаев сокращает аппаратные затраты. Описания спецпроцессоров приведены в кн.: Корякин Ю.А., Смирнов С.А., Яковлев Г.В. «Корабельная гидроакустическая техника», Санкт Петербург: Изд. Наука, 2004 г., стр. 281. Там же приведено описание гидроакустических комплексов, построенных на основе спецпроцессоров стр. 296., стр. 328. С использованием этих же процессоров могут быть реализованы вновь введенные блоки предлагаемого изобретения.

В блоке 4 производится пороговое обнаружение эхосигналов. Эти эхосигналы с измеренными амплитудами и измеренными временами положения максимумов передаются в блок 5 определения дистанций по каждому пространственному каналу и выбор соседних пространственных каналов, в которых произошло превышение порога в одно и то же время. В блоке 6 производится определения курсового угла по измеренным амплитудам и пространственным каналам и величины изменения курсовых углов за время MT, где T - время между излучениями, M - число излучений. Полученная оценка пространственного канала и оценка дистанции передаются в блок 7 сбора и идентификации, где запоминаются и формируют массив данных для дальнейшей обработки, которая происходит в блоке 8. Для дистанции Дм имеем ΔКУ=(КУ1-КУм), после чего можно получить дистанцию, пройденную объектом в тангенциальном направлении за время между M посылками, Дтм SinΔКУ° и тангенциальную составляющую скорости цели по формуле Vт.ц=Дт\MT. Тогда скорость сближения или радиальная составляющая скорости цели Vр.ц=Vт tgΔКУ°, а полная скорость цели будет определена как Результаты вычисления тангенциальной составляющей скорости цели, радиальной составляющей и полная оценка скорости цели передаются в блок 9.

Блоки 3, 4, 5, 6, 7, 8 могут быть реализованы с использованием цифровой обработки на основе пакетов расширения «Матлаб», которые обеспечивают последовательную процедуру вычисления заданных алгоритмов, рассмотрены в пособии А.Б. Сергиенко. «Цифровая обработка сигналов». Санкт Петербург, 2011 г., стр. 655.

Блок 9 отображения и управления является известным устройством, которое используется в прототипе, в аналогах и во всех современных гидролокационных станциях для обеспечения управлением работы и отображением результата.

Таким образом, предлагаемая процедура измерения позволяет автоматически определить тангенциальную составляющую скорости движения, уменьшить погрешность измерения радиальной составляющей скорости и автоматически определить полную скорость, что позволит более точно прогнозировать перемещения объекта, обнаруженного гидролокатором.


Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Способ измерения скорости движения цели гидролокатором
Источник поступления информации: Роспатент

Показаны записи 1-10 из 97.
27.12.2015
№216.013.9e8d

Способ обработки сигнала шумоизлучения объекта

Использование: изобретение относится к гидроакустике и может быть использовано при разработке гидроакустической аппаратуры, предназначенной для обнаружения шумящих объектов. Сущность: способ обработки сигнала шумоизлучения объекта содержит прием временной последовательности сигнала...
Тип: Изобретение
Номер охранного документа: 0002572219
Дата охранного документа: 27.12.2015
27.01.2016
№216.014.bc70

Антенная система эхолота для надводного корабля

Использование: изобретение относится к области гидроакустики и предназначено для установки на надводных кораблях (НК), преимущественно на ледоколах, в составе эхолотов. Техническим результатом от использования изобретения является сохранение целостности стального корпуса (днища) НК и его...
Тип: Изобретение
Номер охранного документа: 0002573713
Дата охранного документа: 27.01.2016
20.04.2016
№216.015.34d5

Способ измерения скорости звука

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем. Неподвижный источник излучает через постоянные промежутки времени Т постоянные по длительности зондирующие сигналы. Сигналы распространяются в...
Тип: Изобретение
Номер охранного документа: 0002581416
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3780

Гидроакустический способ определения пространственных характеристик объекта на дне

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия. Способ содержит излучение зондирующего сигнала в момент времени t, после излучения измеряется...
Тип: Изобретение
Номер охранного документа: 0002582623
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.395a

Гидроакустический способ обработки рыбопромысловой информации

Использование: изобретение относится к области морского рыболовного промысла и может повысить эффективность процесса вылова рыбы с использованием гидроакустических средств. Сущность: гидроакустический способ обработки рыбопромысловой информации содержит обнаружение рыбного скопления...
Тип: Изобретение
Номер охранного документа: 0002582624
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5383

Гидролокационный способ обнаружения подводных объектов в контролируемой акватории

Изобретение относится к области гидроакустики и предназначено для автоматического обнаружения малоподвижных объектов. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство сигналами, принимают эхосигналы от...
Тип: Изобретение
Номер охранного документа: 0002593824
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5587

Способ измерения радиальной скорости объекта по его шумоизлучению

Изобретение относится к области гидроакустики, в частности к способам измерения радиальной скорости движения объекта. Способ заключается в следующем. С помощью антенны принимают сигнал шумоизлучения объекта, осуществляют дискретизацию принятого сигнала и измерение спектра сигнала по набранной...
Тип: Изобретение
Номер охранного документа: 0002593622
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.565a

Способ цветового кодирования информации гидроакустического шумопеленгования

Изобретение относится к области гидроакустики и предназначено для определения расстояния до всех объектов, одновременно наблюдаемых в секторном обзоре шумопеленгования, путем анализа цвета их трасс. Производят прием гидроакустического шумового сигнала многоэлементной антенной, формируют...
Тип: Изобретение
Номер охранного документа: 0002593621
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5ff6

Гидроакустический способ измерения глубины погружения неподвижного объекта

Использование: настоящее изобретение относится к области гидролокации и предназначено для использования в станциях освещения ближней обстановки при измерении параметров обнаруженного объекта. Сущность: способ измерения глубины погружения, содержащий излучение двух последовательных во времени...
Тип: Изобретение
Номер охранного документа: 0002590932
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6053

Активный гидролокатор

Использование: изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов и классификации обнаруженных объектов....
Тип: Изобретение
Номер охранного документа: 0002590226
Дата охранного документа: 10.07.2016
Показаны записи 1-10 из 71.
27.01.2013
№216.012.20e7

Способ обнаружения и классификации сигнала от цели

Изобретение относится к гидроакустике и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Сущность: принимают сигнал статическим веером характеристик направленности....
Тип: Изобретение
Номер охранного документа: 0002473924
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.08.2013
№216.012.61c8

Способ классификации объекта, обнаруженного гидролокатором

Использование: изобретение относится к области гидроакустики и может быть использовано для повышения эффективности классификации объектов, обнаруженных навигационными станциями освещения ближней обстановки. Сущность: способ классификации содержит излучение зондирующего сигнала, прием...
Тип: Изобретение
Номер охранного документа: 0002490664
Дата охранного документа: 20.08.2013
20.10.2013
№216.012.76f9

Способ измерения параметров перемещения источника зондирующих сигналов

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения зондирующих сигналов гидролокаторов, установленных на подвижном носителе. Достигаемый технический результат - обеспечение возможности измерения скорости подвижного носителя и дистанции до...
Тип: Изобретение
Номер охранного документа: 0002496117
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8a1c

Гидроакустическая система

Использование: изобретение относится к области гидроакустики и может быть использовано для построения гидроакустических систем, содержащих навигационную станцию освещения ближней обстановки (НГАС ОБО) и самоходный необитаемый подводный аппарат (СНПА). Сущность: гидроакустическая система...
Тип: Изобретение
Номер охранного документа: 0002501038
Дата охранного документа: 10.12.2013
10.04.2014
№216.012.af5d

Способ измерения толщины льда с подводного носителя

Использование: изобретение относится к области гидроакустики и может быть использовано в навигационных приборах обнаружения льда и измерения его характеристик. Сущность: в способе автоматического измерения толщины льда с подводного носителя измеряют глубину погружения Н носителя, формируют и...
Тип: Изобретение
Номер охранного документа: 0002510608
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0e0

Способ определения скорости звука

Изобретение относится к области гидроакустической метрологии и может быть использовано для построения современных многолучевых эхолотов. Производят ненаправленное излучение зондирующего сигнала в сторону дна, прием отраженного сигнала веером статических характеристик направленности (ХН),...
Тип: Изобретение
Номер охранного документа: 0002515125
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c206

Способ измерения изменения курсового угла движения источника зондирующих сигналов

Настоящее изобретение относится к области гидроакустики и может быть использовано для определения параметров движения гидролокаторов или других источников излучения зондирующих сигналов. Техническим результатом использования предлагаемого изобретения является определение элементов движения...
Тип: Изобретение
Номер охранного документа: 0002515419
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c693

Способ определения ошибки оценки дистанции гидролокатором

Использование: в гидроакустике. Сущность: способ предназначен для определения ошибки оценки дистанции гидролокатором, установленным на подводном подвижном носителе относительно неподвижного отражателя. Для этого с помощью гидролокатора производят излучение зондирующих сигналов, определяют время...
Тип: Изобретение
Номер охранного документа: 0002516594
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c69b

Способ определения глубины погружения объекта

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки. Сущность: в способе определения глубины погружения объекта гидролокатором излучают зондирующий сигнал,...
Тип: Изобретение
Номер охранного документа: 0002516602
Дата охранного документа: 20.05.2014
+ добавить свой РИД