×
10.05.2018
218.016.43ae

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания. Определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре. Определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания. Прогнозирование этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур. Технический результат - повышение информативности способа, снижение трудоемкости определения показателей термоокислительной стабильности в широком диапазоне температур за счет возможности их прогнозирования, более точное определение температурной области работоспособности смазочных материалов. 2 табл., 6 ил.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров процесса окисления (Патент РФ №2219530 С1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский В.И. и др. RU).

Наиболее близким по технической сущности и достигаемому результату является принятый в качестве прототипа способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят как минимум при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графическую зависимость показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которой определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатком аналога и прототипа является невозможность прогнозировать показатели термоокислительной стабильности, включающие оптическую плотность, испаряемость и коэффициент термоокислительной стабильности при любых температурах ниже критической.

Задачей изобретения является создание способа прогнозирования показателей термоокислительной стабильности смазочных материалов при любых температурах, на основе известных данных этих показателей, полученных при трех выбранных температурах.

Для решения поставленной задачи предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания, определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре, определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания, а прогнозирование этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур.

На фиг. 1а представлены зависимости оптической плотности от времени и температуры окисления: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 1б - зависимости десятичного логарифма времени достижения принятых значений оптической плотности от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - D=0,1; 2 - D=0,2; 3 - D=0,3; 4 - D=0,4; 5 - D=0,5; 6 - D=0,6; 7 - D=0,7.

На фиг. 2а - зависимости испаряемости от времени и температуры испытания: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 2б - зависимости десятичного логарифма времени достижения принятых значений испаряемости от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - G=2 г; 2 - G=3 г; 3 - G=4 г; 4 - G=5 г; 5 - G=6 г; 6 - G=7 г; 7 - G=8 г.

На фиг. 3а - зависимости коэффициента термоокислительной стабильности от времени и температуры испытания: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 3б - зависимости десятичного логарифма времени достижения принятых значений коэффициента термоокислительной стабильности от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - ПТОС=0,1; 2 - ПТОС=0,2; 3 - ПТОС=0,3; 4 - ПТОС=0,4; 5 - ПТОС=0,5; 6 - ПТОС=0,6; 7 - ПТОС=0,7.

На фиг. 4а - зависимости оптической плотности от времени и температуры окисления: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 4б - зависимости десятичного логарифма времени достижения принятых значений оптической плотности от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - D=0,1; 2 - D=0,2; 3 - D=0,3; 4 - D=0,4; 5 - D=0,5.

На фиг. 5a - зависимости испаряемости от времени и температуры испытания: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 5б - зависимости десятичного логарифма времени достижения принятых значений испаряемости от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - G=1 г; 2 - G=2 г; 3 - G=3 г; 4 - G=4 г; 5 - G=5 г; 6 - G=6 г; 7 - G=7 г; 8 - G=8 г.

На фиг. 6a - зависимости коэффициента термоокислительной стабильности от времени и температуры испытания: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 6б - зависимости десятичного логарифма времени достижения принятых значений коэффициента термоокислительной стабильности от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - ПТОС=0,1; 2 - ПТОС=0,2; 3 - ПТОС=0,3; 4 - ПТОС=0,4; 5 - ПТОС=0,5; 6 - ПТОС=0,6.

Способ прогнозирования показателей термоокислительной стабильности предусматривает испытания смазочных материалов при трех температурах, определение показателей термоокислительной стабильности, таких как оптическая плотность D, испаряемость G и коэффициент термоокислительной стабильности ПТОС, и по этим данным вычисляются значения этих показателей при других температурах. Поэтому для реализации способа необходимо получить зависимости оптической плотности, испаряемости и коэффициента термоокислительной стабильности от времени и принятых температур испытания. Для этого пробы смазочного материала постоянной массы термостатируют при одной из выбранных температур, например 180°C, с перемешиванием механической мешалкой с постоянной частотой вращения. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившегося масла (испаряемость) G, определяют коэффициент испаряемости KG

где G - масса испарившегося смазочного материала за время окисления, г; M - масса смазочного материала до испытания, г.

Затем отбирается часть окисленной пробы для фотометрирования и определения оптической плотности D:

где ϕ0 - световой поток, падающий на поверхность смазочного масла в кювете; ϕ - световой поток, прошедший через слой окисленного масла в кювете.

По данным D и KG определяют коэффициент термоокислительной стабильности:

Испытания смазочного материала продолжают до достижения показателя оптической плотности значения, равного 0,6-0,7. Данный смазочный материал испытывают по этой технологии при двух других выбранных температурах, например 170 и 160°C. По полученным данным показателей D, G и ПТОС строят графические зависимости от времени и температуры испытания (фиг. 1а-6а). Данные зависимости используют для определения времени достижения оптической плотности D и коэффициента термоокислительной стабильности значений, равных 0,1; 0,2; 0,3 и т.д., а испаряемости - значений, равных 1; 2; 3 и т.д. г (на графиках горизонтальные штриховые линии). По данным времени достижения указанных значений оптической плотности, испаряемости и коэффициента термоокислительной стабильности определяют их десятичные логарифмы, строят графические зависимости десятичного логарифма времени достижения принятых значений показателей термоокислительной стабильности (D, G, ПТОС) от температуры испытания, по которым прогнозируют значения показателей термоокислительной стабильности при других температурах. Например, для определения значений оптической плотности, испаряемости и коэффициента термоокислительной стабильности частично синтетического моторного масла Mobil 10W-40 SJ/CF при температуре 160°C было выбрано четыре температуры термостатирования - 200°C, 190°C, 180°C и 170°C. Для этих температур определили значения D, G и ПТОС и результаты записали в таблицу 1. Затем построили графические зависимости показателей D, G и ПТОС от времени и температуры испытания (фиг. 1а-3а), а также графические зависимости десятичного логарифма времени достижения принятых показателей от температуры испытания (фиг. 1б-3б). После этого определили ординаты десятичного логарифма на оси ординат при температуре 160°C, вычислили антилогарифм этих значений, на фиг. 1а-3а отложили эти значения на горизонтальных штриховых линиях (кривые 5 на фиг. 1а-3а) и на оси ординат определили искомые значения оптической плотности, испаряемости и коэффициента термоокислительной стабильности при температуре 160°C. Аналогичные действия проведены при испытании минерального моторного масла Tavota Castle 10W-30 SL при выбранных температурах 180°C, 170°C и 160°C для нахождения значений показателей термоокислительной стабильности при температурах 190 и 150°C (кривые 4 и 5 на фиг. 4а-6а). Результаты данных испытаний отражены в таблице 2 и на фиг. 4 - 6.

На фиг. 1а, 2а, 3а построены экспериментальные зависимости показателей термоокислительной стабильности D, G, ПТОС от времени и температур испытания 200°C, 190°C, 180°C и 170°C (кривые 1-4) для частично синтетического моторного масла Mobil 10W-40 SJ/CF с целью доказательства, что десятичный логарифм времени достижения установленных значений, например D и ПТОС, равных 0,1; 0,2; 0,3 и т.д., или испаряемости G, равной 2 г, 3 г, 4 г и т.д., от температуры испытания изменяется по линейной зависимости (фиг. 1б-3б). Для того чтобы получить зависимость, например, оптической плотности от времени при температуре 160°C без проведения эксперимента используют графические зависимости lgt=f(T) (фиг. 1б) и уже для температуры 160°C (данные на ординате) определяют антилогарифм времени достижения значений D, например 0,1; 0,2; 0,3 и на штриховых линиях на фиг. 1а откладывают время и строят графическую зависимость D=f(t) для температуры 160°C (кривая 5). Таким образом, можно прогнозировать изменение оптической плотности, испаряемости и коэффициента термоокислительной стабильности для температур ниже или выше температур, при которых проводились экспериментальные исследования.

Предлагаемое техническое решение позволяет повысить информативность способа, снизить трудоемкость определения показателей термоокислительной стабильности в широком диапазоне температур, определить температурную область работоспособности смазочных материалов и промышленно применимо.

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления, отличающийся тем, что для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания, определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре, определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания, а прогнозирование значений этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур.
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 324.
06.04.2019
№219.016.fe07

Способ очистки дымовых газов тепловых устройств от токсичных соединений

Изобретение относится к области очистки от токсичных соединений дымовых газов тепловых устройств, работающих на сернистых видах топлива, твердыми адсорбентами, например, шламовыми отходами глиноземного производства и может быть использовано в энергетической, металлургической и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002684088
Дата охранного документа: 03.04.2019
11.04.2019
№219.017.0b5a

Полосковый фильтр

Использование: для создания полосовых фильтров. Сущность изобретения заключается в том, что полосковый полосно-пропускающий фильтр содержит две параллельные диэлектрические подложки, подвешенные между экранами корпуса 2, на обе поверхности которых нанесены полосковые металлические проводники,...
Тип: Изобретение
Номер охранного документа: 0002684438
Дата охранного документа: 09.04.2019
23.04.2019
№219.017.36c6

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах...
Тип: Изобретение
Номер охранного документа: 0002685582
Дата охранного документа: 22.04.2019
23.04.2019
№219.017.36ce

Способ поиска углеводородов

Изобретение относится к геофизическим методам поиска минеральных ресурсов и может быть использовано при разведке нефтяных и газовых месторождений. Предложен способ поиска углеводородов, заключающийся в возбуждении сейсмической волны в исследуемой геологической среде и регистрации...
Тип: Изобретение
Номер охранного документа: 0002685577
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b15

Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах

Изобретение относится к нефтегазовой промышленности, в частности к установкам улавливания легких фракций нефти и нефтепродуктов при сливо-наливных операциях и транспортировании. Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах...
Тип: Изобретение
Номер охранного документа: 0002685672
Дата охранного документа: 22.04.2019
27.04.2019
№219.017.3d09

Регулятор давления в кювете

Изобретение относится к зубопротезной технике, а именно к устройствам, применяемым для снижения образования воздушных каверн в базисной пластмассе при изготовлении стоматологических протезов, и позволяет повысить качество готового изделия при минимальных затратах. Регулятор давления в кювете,...
Тип: Изобретение
Номер охранного документа: 0002686369
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.4948

Нутромер индикаторный

Изобретение может быть использовано для измерения больших размеров внутренних поверхностей деталей машин и механизмов в тяжелом машиностроении, в военно-промышленном комплексе и других отраслях. В нутромере индикаторном, содержащем корпус с центрирующим мостиком, в отверстие которого с одной...
Тип: Изобретение
Номер охранного документа: 0002687078
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.49f3

Способ управления клапанами импульсно-предохранительного устройства и устройство для его осуществления

Изобретения относятся к области трубопроводной арматуры и могут быть использованы при разработке предохранительных клапанов со вспомогательным клапаном для управления главным и иными клапанами. Технический результат заключается в повышении функциональной надежности импульсно-предохранительного...
Тип: Изобретение
Номер охранного документа: 0002687198
Дата охранного документа: 07.05.2019
10.05.2019
№219.017.515e

Лабораторная установка

Изобретение относится к установкам для проведения учебных занятий по дисциплинам: «Техносферная безопасность», «Технологические процессы и загрязняющие выбросы», «Промышленная экология», «Охрана окружающей среды в теплотехнологиях», и позволяет выявить влияние расхода, температуры и влажности...
Тип: Изобретение
Номер охранного документа: 0002687226
Дата охранного документа: 07.05.2019
16.05.2019
№219.017.5275

Способ защиты угольной части анода от окисления

Изобретение относится к производству алюминия в электролизерах с обожженным анодом. Способ защиты угольной части анода от окисления включает нанесение глинозема на подошву и боковые стенки анода путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с...
Тип: Изобретение
Номер охранного документа: 0002687526
Дата охранного документа: 14.05.2019
Показаны записи 31-35 из 35.
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД