×
29.05.2020
220.018.21ad

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002722119
Дата охранного документа
26.05.2020
Аннотация: Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности. По данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, которое определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности. Вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя и строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания. По этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания. Также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. Кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. На основании полученных данных для каждого показателя строят дополнительные графические зависимости. При этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания. По зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур. Технический результат - повышение информативности контроля смазочных материалов для сравнения их качества и выбора. 3 ил., 1 табл.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров процесса окисления (Патент РФ №2219530 С1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский Б. И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является принятый в качестве прототипа способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления, причем для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания, определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре, определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания, а прогнозирование значений этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур (Патент РФ №2649600, дата приоритета 03.05.2017, дата публикации 04.04.2018, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатков аналога и прототипа является невозможность определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов в зависимости от времени испытания и тепловой энергии, поглощенной продуктами термостатирования.

Технической проблемой, решаемой изобретением, является создание способа определения температуры начала изменения показателей термоокислительной стабильности, включающих оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, учитывающий совместное изменение оптический плотности и испаряемости, а также определения предельной температуры работоспособности смазочного материала от времени испытания и прогнозирования времени начала изменения показателей термоокислительной стабильности при других температурах испытания.

Для решения технической проблемы предложен способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, по данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, причем количество тепловой энергии определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности, вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя, строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания, по этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания, также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре, кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре, на основании полученных данных для каждого показателя строят дополнительные графические зависимости, при этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания, по зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур.

В качестве примера приведен способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов, а также прогнозирования времени начала изменения показателей термоокислительной стабильности, предусматривающий испытания частично синтетического моторного масла Total Quartz 10W-40SL/CF при температурах 190, 180, 170 и 160°С.

На фиг. 1а представлены зависимости десятичного логарифма тепловой энергии, поглощенной продуктами окисления, от десятичного логарифма времени и температуры испытания: 1 - 190°С; 2 - 180°С; 3 - 170°С; 4 - 160°С; на фиг. 1б - зависимость десятичного логарифма тепловой энергии, поглощенной продуктами окисления, от температуры испытания при lgt=0,7; на фиг. 1в - зависимость десятичного логарифма времени от температуры испытания при lgQD - 0,5; на фиг. 1г - зависимость десятичного логарифма времени начала изменения десятичного логарифма тепловой энергии, поглощенной продуктами окисления, от температуры испытания частично синтетического моторного масла Total Quartz 10W-40SL/CF.

На фиг. 2а представлены зависимости десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от десятичного логарифма времени и температуры испытания: 1 - 190°С; 2 - 180°С; 3 - 170°С; 4 - 160°С; на фиг. 2б - зависимость десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от температуры испытания при lgt=0,7; на фиг. 2в - зависимость десятичного логарифма времени от температуры испытания при lgQG=2; на фиг. 2г - зависимость десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от температуры испытания частично синтетического моторного масла Total Quartz 10W-40SL/CF при lgt=0.

На фиг. 3а представлены зависимости десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, от десятичного логарифма времени и температуры испытания: 1 - 190°С; 2 - 180°С; 3-170°С; 4-160°С; на фиг. 3б - зависимость десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, от температуры испытания при lgt=0,7; на фиг. 3в - зависимость десятичного логарифма времени от температуры испытания при значении на фиг. 3г - зависимость десятичного логарифма времени начала изменения десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, от температуры испытания частично синтетического моторного масла Total Quartz 10W-40SL/CF

Для получения указанных графических зависимостей и реализации способа необходимо получить данные по оптической плотности, испаряемости и коэффициенту термоокислительной стабильности. Для этого пробы смазочного материала постоянной массы термостатируют при выбранных температурах с перемешиванием механической мешалкой с постоянной частотой вращения. Через равные промежутки времени, например 8 часов, пробу окисленного смазочного материала взвешивают, определяют массу испарившегося масла m и вычисляют коэффициент испаряемости KG

где m - масса испарившегося смазочного материала за время окисления (8 часов), г;

М - масса пробы смазочного материала до испытания, г.

Отбирают часть окисленной пробы для фотометрирования и определения оптической плотности D

где 300 - показания фотометра при незаполненной кювете, мкА;

П - показания фотометра при заполненной кювете окисленным маслом, мкА.

По данным D и KG вычислялся коэффициент термоокислительной стабильности ПТОС

При термостатировании смазочных материалов часть тепловой энергии поглощается продуктами окисления, изменяя оптическую плотность, а часть - продуктами испарения, изменяя массу испарившегося смазочного материала, поэтому количество тепловой энергии Q, поглощенной продуктами окисления и испарения, предлагается определить произведением:

- для оптической плотности

где Т - температура термостатирования, °С;

t - время испытания, ч;

D - оптическая плотность за время t, ед;

- для испаряемости

где G - испаряемость масла, г;

- для коэффициента термоокислительной стабильности

Результаты испытания и вычисления десятичных логарифмов тепловой энергии, поглощенной продуктами окисления lgQD; испарения lgQG; суммарной тепловой энергии, поглощенной продуктами окисления и испарения сведены в таблицу.

На фиг. 1a представлены зависимости десятичного логарифма тепловой энергии, поглощенной продуктами окисления, от десятичного логарифма времени и температуры испытания частично синтетического моторного масла Total Quartz 10W-40SL/CF. Данные зависимости используются для определения температуры начала изменения десятичного логарифма тепловой энергии (фиг. 1б), предельной температуры работоспособности исследуемого смазочного материала (фиг. 1в) и десятичного логарифма времени начала изменения десятичного логарифма тепловой энергии, поглощенной продуктами окисления (фиг. 1г). Для этого необходимо провести две штриховые линии: по вертикали при десятичном логарифме времени испытания lgt=0,7, что соответствует 5 часам испытания (штриховая линия I), и по горизонтали (штриховая линия II), соответствующая десятичному логарифму тепловой энергии lgQD=0,5, поглощенной продуктами окисления, с помощью которых в первом случае определяют значения десятичного логарифма поглощенной тепловой энергии продуктами окисления при каждой температуре и по этим значениям строят графическую зависимость (фиг. 1б), по которой определяют температуру начала изменения десятичного логарифма тепловой энергии, поглощенной продуктами окисления, которая составила 155°С. Во втором случае определяют значения десятичного логарифма времени испытания lgt при каждой температуре при десятичном логарифме тепловой энергии lgQD, поглощенной продуктами окисления, равном 0,5, и по этим данным строят графическую зависимость (фиг. 1в), по которой определяют критическую температуру работоспособности исследуемого моторного масла, которая составила 207°С, т.е. при этой температуре десятичный логарифм lgQD=0 или 1 часу. Через один час испытания при температуре 207°С начинается изменение десятичного логарифма тепловой энергии или образование продуктов окисления..

По зависимости десятичного логарифма тепловой энергии lgQD, поглощенной продуктами окисления, от десятичного логарифма времени и температуры испытания (фиг. 1а) определяют значения десятичных логарифмов времени начала изменения десятичного логарифма тепловой энергии, поглощенной продуктами окисления, при каждой температуре испытания (точки пересечения прямых 1; 2; 3 и 4 с осью абсцисс), по которым строят графическую зависимость десятичного логарифма времени начала lgtH изменения десятичного логарифма тепловой энергии, поглощенной продуктами окисления при каждой температуре (фиг. 1г), по которой прогнозируют десятичные логарифмы времени начала изменения lgQD при других температурах. Например, при температуре 150°С десятичный логарифм времени начала изменения десятичного логарифма тепловой энергии составит 0,77, т.е. 5,9 часа, а при температуре 190°С - lgtH=0,08 или 1,2 часа.

Аналогичным образом используют зависимости десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от десятичного логарифма времени и температуры испытания исследуемого моторного масла для определения температуры начала изменения десятичного логарифма тепловой энергии lgQG (фиг. 2б), предельной температуры испаряемости (фиг. 2в) и температуры начала изменения десятичного логарифма тепловой энергии при lgtG=0. Для этого необходимо провести вертикальную штриховую линию при lgtG=0,7, что соответствует 5 часам испытания (штриховая линия I), по которой определяют значения десятичного логарифма тепловой энергии lgQG, поглощенной продуктами испарения, для каждой температуры испытания и строят графическую зависимость по этим данным (фиг. 2б), по которой определяют температуру начала изменения десятичного логарифма lgQG. Данная зависимость описывается линейным уравнением

где 96,24 - коэффициент, характеризующий температуру начала изменения десятичного логарифма lgQG.

Вторая горизонтальная штриховая линия проведена при значении lgQG=2, по которой определяют значения десятичного логарифма времени испытания для каждой температуры испытания lgt, по которым строят графическую зависимость десятичного логарифма времени испытания от температуры (фиг. 2в), по которой определяют значения предельной температуры испаряемости исследуемого масла, которая составила 190°С.

Используя зависимости десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от времени и температуры испытания (фиг. 2а), определяют значения lgQG при пересечении зависимостей с осью ординат для каждой из температур и по этим значениям строят графическую зависимость десятичного логарифма тепловой энергии, поглощенной продуктами испарения, от температуры испытания (фиг. 2г), по которой определяют температуру начала изменения десятичного логарифма lgQG при десятичном логарифме времени испытания lgt=0, которая равна 135°С, что позволяет прогнозировать значения десятичного логарифма lgQG для других температур. Так, для температуры 150°С десятичный логарифм lgQG равен 0,55, которая будет размещена на оси ординат (фиг. 2а) как начало зависимости lgQG для температуры 150°С.

На фиг. 3а представлены зависимости десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, от десятичного логарифма времени и температуры испытания исследуемого моторного масла, которые используют для определения температуры начала изменения десятичного логарифма суммарной тепловой энергии (фиг. 3б), предельной температуры работоспособности исследуемого моторного масла с учетом процессов окисления и испарения (фиг. 3в) и десятичного логарифма времени начала lgtH изменения десятичного логарифма суммарной тепловой энергии при Для этого на зависимостях (фиг. 3а) необходимо провести вертикальную штриховую линию при десятичном логарифме времени lgt=0,7 (штриховая линия I) и определить значения десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, для каждой температуры испытания исследуемого моторного масла и построить графическую зависимость десятичного логарифма суммарной тепловой энергии от температуры испытания (фиг. 3б), по которой определяют температуру начала изменения десятичного логарифма суммарной тепловой энергии, которая составила 145°С.

Для определения предельной температуры работоспособности исследуемого моторного масла необходимо провести горизонтальную штриховую линию II (фиг. 3а) при десятичном логарифме суммарной тепловой энергии и определить значения десятичного логарифма времени для каждой температуры испытания, по которым строят графическую зависимость десятичного логарифма времени от температуры испытания (фиг. 3в), по которой определяют предельную температуру работоспособности исследуемого моторного масла с учетом процессов окисления и испарения, которая составила 200°С.

По зависимостям десятичного логарифма суммарной тепловой энергии, поглощенной продуктами окисления и испарения, от десятичного логарифма времени и температуры испытания (фиг. 3а) определяют значения десятичных логарифмов времени начала изменения десятичных логарифмов суммарной тепловой энергии для каждой температуры (точки пересечения прямых 1; 2; 3 и 4 с осью абсцисс), по которым строят графическую зависимость десятичного логарифма времени начала lgtH изменения десятичного логарифма суммарной тепловой энергии от температуры испытания исследуемого моторного масла, по которой определяют температуру начала изменения данного показателя , которая составила 186°С, а также производят прогнозирование десятичного логарифма времени начала изменения показателя для других температур. Например, для температуры 150°С десятичный логарифм времени начала изменения составит 0,61, т.е. 4,07 часа.

Предлагаемое техническое решение позволяет расширить информацию о качестве смазочных материалов за счет применения дополнительных показателей, включающих определение температур начала изменения показателей термоокислительной стабильности, предельной температуры работоспособности смазочных материалов и времени начала изменения показателей термоокислительной стабильности, что позволяет их сравнивать и обоснованно применять более термостойкие, и промышленно применимо.

Технический результат заключается в повышении информативности контроля смазочных материалов для сравнения их качества и выбора.

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, по данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, причем количество тепловой энергии определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности, вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя, строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания, по этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания, также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре, кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре, на основании полученных данных для каждого показателя строят дополнительные графические зависимости, при этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания, по зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 324.
27.03.2016
№216.014.c5b2

Станок шарошечного бурения

Изобретение относится к горной промышленности, а именно к станкам шарошечного бурения. Станок включает мачту, буровую головку с буровым снарядом, канатно-полиспастную систему с гидроцилиндром привода подачи, гидрораспределитель гидроцилиндров привода подачи с управляющими камерами подъема и...
Тип: Изобретение
Номер охранного документа: 0002578684
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0515

Композиция для получения сорбента на основе карбамидоформальдегидной смолы

Изобретение относится к композиции для получения сорбента для очистки загрязненных объектов от нефтепродуктов. Композиция содержит следующие компоненты в масс. %: карбамидоформальдегидная смола 25-30; шлам газоочистки производства алюминия 8-12; магнетит 5-7; пенообразователь, содержащий ПАВ,...
Тип: Изобретение
Номер охранного документа: 0002587440
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.053a

Способ измерения расстояния между бортовой и наземной приёмопередающими станциями

Изобретение относится к способам измерения расстояния и может быть использовано в радионавигации и радиолокации. Достигаемый технический результат изобретения - сокращение времени и повышение точности измерения расстояния между бортовой и наземной приемопередающими станциями. Указанный...
Тип: Изобретение
Номер охранного документа: 0002587471
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2c21

Способ получения легированного оксидом висмута серебряно-оловооксидного материала для электроконтактов

Изобретение относится к способу получения легированного оксидом висмута серебряно-оловооксидного материала для электрических контактов и может найти применение в электротехнической промышленности. Способ включает сплавление металлического серебра, олова и висмута в инертной атмосфере при...
Тип: Изобретение
Номер охранного документа: 0002579846
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d16

Кормоприготовитель

Изобретение относится к сельскому хозяйству, а именно к устройствам для приготовления комбикормов. Кормоприготовитель содержит корпус в виде стоек на опорной плите, цилиндрическую рабочую камеру с торцевыми крышками, в которой расположены ведущий и ведомый элементы с измельчающими зубьями....
Тип: Изобретение
Номер охранного документа: 0002579773
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30da

Устройство для бурения скважин

Изобретение относится к горной промышленности и может быть использовано для бурения взрывных скважин на карьерах и шахтах, а также для проходки технологических скважин, в том числе при бурении сложноструктурных пород. Устройство для бурения скважин содержит корпус, вращательно-подающий механизм...
Тип: Изобретение
Номер охранного документа: 0002580118
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.367a

Способ вентиляции глубоких карьеров

Изобретение относится к горной промышленности и может быть использовано при искусственном проветривании застойных зон глубоких карьеров. Техническим результатом предлагаемого решения является повышение эффективности регулирования вентиляционных потоков и их распределения между застойными...
Тип: Изобретение
Номер охранного документа: 0002581644
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3692

Способ возведения свайного фундамента

Изобретение относится к строительству и может быть использовано при строительстве зданий и сооружений на свайных ростверках. Способ возведения свайного фундамента включает устройство ростверка на подготовленном грунтовом основании, поэтапное задавливание свай домкратами по мере возведения...
Тип: Изобретение
Номер охранного документа: 0002581853
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36ef

Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано для определения температуры застывания нефти и нефтепродуктов. Согласно заявленному решению изменение температуры испытуемого нефтепродукта, помещенного в цилиндрический стакан, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002581383
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36f6

Устройство для уплотнения снега

Изобретение относится к машине для уплотнения снега при строительстве снеголедовых дорог и грунтовых аэродромов в зимнее время. Устройство для уплотнения снега включает рабочий орган, агрегатированный с тягачом, и вибровозбудитель колебаний. Рабочий орган выполнен в виде уплотняющей плиты (1) с...
Тип: Изобретение
Номер охранного документа: 0002581667
Дата охранного документа: 20.04.2016
Показаны записи 1-10 из 34.
10.06.2013
№216.012.49c3

Способ определения смазывающей способности масел

Изобретение относится к технологии оценки качества жидких смазочных материалов, в частности к определению их смазывающей способности. В способе, заключающемся в том, что пробу масла постоянной массы нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного...
Тип: Изобретение
Номер охранного документа: 0002484463
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4dc0

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. Заявлен способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в...
Тип: Изобретение
Номер охранного документа: 0002485486
Дата охранного документа: 20.06.2013
27.07.2013
№216.012.5a48

Соединение трубопроводов

Изобретение относится к области соединения трубопроводов и может найти применение в конструкции соединений газонефтепроводов, водоводов и канализации. Технический результат заключается в снижении трудоемкости операций при демонтаже и замене изношенных участков трубопровода. Соединение...
Тип: Изобретение
Номер охранного документа: 0002488733
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6006

Устройство для магнитной обработки жидкости

Изобретение относится к технике магнитной обработки жидкости и может быть использовано для магнитной обработки воды и жидких нефтепродуктов и нефти. Технический результат заключается в повышении эффективности обработки жидкости в магнитном поле за счет создания вращающихся магнитного поля и...
Тип: Изобретение
Номер охранного документа: 0002490214
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78b1

Установка для улавливания паров нефти и нефтепродуктов

Изобретение относится к нефтегазовой промышленности. Установка для улавливания паров нефти и нефтепродуктов содержит холодильный блок, трубопровод, соединенный с паровой зоной резервуара и с холодильным блоком, насос, запорную арматуру и соединительные трубопроводы, при этом холодильный блок...
Тип: Изобретение
Номер охранного документа: 0002496559
Дата охранного документа: 27.10.2013
27.04.2014
№216.012.bd41

Способ повышения износостойкости пар трения

Настоящее изобретение относится к способу повышения износостойкости пар трения путем обработки смазочного материала, работающего в узлах трущихся деталей, при этом обработку смазочного материала осуществляют непосредственно в трибоузле, при этом на одну трущуюся поверхность детали трибоузла...
Тип: Изобретение
Номер охранного документа: 0002514189
Дата охранного документа: 27.04.2014
10.09.2014
№216.012.f335

Способ определения качества смазочных масел

Изобретение относится к технологии контроля качества смазочных масел при их применении и совместимости с материалами деталей машин. Способ заключается в том, что пробу масла постоянной массы нагревают при постоянной температуре с перемешиванием, через равные промежутки времени отбирают часть...
Тип: Изобретение
Номер охранного документа: 0002528083
Дата охранного документа: 10.09.2014
10.04.2015
№216.013.3d9f

Способ повышения термоокислительной стабильности смазочных масел

Настоящее изобретение относится к способу повышения термоокислительной стабильности смазочных масел, по которому пробы смазочного масла термостатируют нагреванием в герметичном стакане без перемешивания в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую...
Тип: Изобретение
Номер охранного документа: 0002547263
Дата охранного документа: 10.04.2015
27.10.2015
№216.013.8a9b

Устройство для диагностики подшипников качения

Изобретение относится к области измерительной техники и может быть использовано преимущественно в различных отраслях машиностроения. Устройство содержит узел установки и крепления внутреннего кольца контролируемого подшипника на приводном валу электродвигателя, два токосъемника,...
Тип: Изобретение
Номер охранного документа: 0002567086
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8a9c

Способ определения смазывающей способности масел

Изобретение относится к технологии оценки качества смазочных масел, в частности к определению их смазочной способности. Способ определения смазывающей способности масел заключается в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют...
Тип: Изобретение
Номер охранного документа: 0002567087
Дата охранного документа: 27.10.2015
+ добавить свой РИД