×
23.04.2019
219.017.36c6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости. Вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, определяют показатель термоокислительной стабильности как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости. Строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности. Технический результат - повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик. 3 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянного объема в присутствии воздуха с перемешиванием, при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум, при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU)

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум, трех температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Причем при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С, при этом определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости, по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления. (Патент РФ №2618581 С1, дата приоритета 18.02.2016, дата публикации 04.05.2017, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатком известного аналога и прототипа является ограниченная информативность о влиянии температурной области на вязкостно-температурные характеристики смазочных материалов и их влиянии на термоокислительную стабильность смазочных материалов и температурную стойкость.

Технической проблемой является повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры в широком диапазоне, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик.

Для решения технической проблемы предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют оптическую плотность, кинематическую вязкость при температурах 40°С и 100°C, определяют индекс вязкости товарного и окисленного смазочного материалов, показатель термоокислительной стабильности, проводят оценку процесса окисления. Согласно изобретению, новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости, вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, а показатель термоокислительной стабильности определяют как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости, строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности.

Согласно изобретению, при термостатировании смазочных материалов с перемешиванием и при одной температуре, выбранной в соответствии с базовой основой и группой эксплуатационных свойств, осуществляют сравнение различных масел одного назначения по показателям термоокислительной стабильности.

Согласно изобретению, при трех температурах термостатирования смазочного материала с перемешиванием определяют показатель термоокислительной стабильности и влияние температуры, продуктов окисления или продуктов окисления и испарения на индекс вязкости.

Согласно изобретению, при термостатировании без перемешивания в температурном диапазоне от 100 до 300°С определяют влияние продуктов температурной деструкции на индекс вязкости.

На фиг. 1 представлены графические зависимости показателя термоокислительной стабильности от оптической плотности моторных масел: 1 - минеральное Роснефть Optimum 10w-40SG/CD; частично-синтетические 2 - Роснефть Maximum 10w-40 SL/CF, 3 - Лукойл Люкс 5w-40SL/CF, полученные при температуре термостатирования 180°С;

На фиг. 2а и 2б - графические зависимости показателей термоокислительной стабильности Птос=D×ИВ от оптической плотности (а) и коэффициента термоокислительной стабильности (б) при испытании минерального моторного масла Лукойл Супер 15w-40 SG/CD в температурном интервале от 140 до 180°С.

На фиг. 3 - графическая зависимость показателя термоокислительной стабильности Птс=D×ИВ от оптической плотности при температурной деструкции в интервале температур от 140 до 300°С при испытании частично синтетического моторного масла Лукойл Люкс 5w-40 SL/CF

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов предусматривает применение следующих средств контроля и испытания: прибора для определения процессов окисления; прибора для определения температурной деструкции; малообъемного вискозиметра для определения кинематической вязкости при температурах 40°С и 100°С; фотометрического устройства для прямого фотометрирования термостатированных смазочных материалов при толщине фотометрируемого слоя в 2 мм и электронных весов для измерения массы испарившегося смазочного материала при термостатировании.

Предлагаемый способ может быть реализован, в частности, в трех вариантах.

Первый вариант предусматривает термостатирование смазочных материалов при одной температуре, выбранной в соответствии с базовой основой (минеральное, трансмиссионное, гидравлическое, индустриальное) и группы эксплуатационных свойств. Применяется для сравнения различных масел одного назначения по показателям термоокислительной стабильности.

Второй вариант предусматривает применение способа при трех температурах термостатирования, что позволяет определить влияние температуры, продуктов окисления или окисления и испарения на индекс вязкости.

Третий вариант предусматривает применение способа в температурном диапазоне температур от 100 до 300°С, что позволяет определить влияние продуктов температурной деструкции на индекс вязкости.

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов осуществляется следующим образом для всех трех этапов. Пробу исследуемого смазочного материала постоянной массы, например 100±0,1, нагревают до выбранной температуры или диапазона температур в зависимости от базовой основы с перемешиванием с помощью механической мешалки для смешивания с кислородом воздуха. Причем при исследовании температурной стойкости (деструкции) перемешивание исключается. Температура и частота вращения механической мешалки поддерживаются автоматически.

Через равные промежутки времени пробу термостатированного масла взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности D

где 300 - показания фотометра при незаполненной маслом кювете, мкА;

П - показания фотометра при заполненной термостатированным маслом кювете, мкА.

Часть пробы используют для определения кинематической вязкости при температурах 40 и 100°С. Затем по ГОСТ 25371-97 (ИСО 2909-81) определяют индекс вязкости.

В процессе термостатирования смазочного материала изменяется оптическая плотность и испаряемость, влияющие на кинематическую вязкость и соответственно индекс вязкости, поэтому термоокислительную стабильность определяют коэффициентом Ктос, выраженным суммой:

где KG - коэффициент испаряемости

где m - масса испарившегося смазочного материала за время испытания t, г;

М - масса пробы до испытания, г.

Коэффициент Ктос учитывает только процессы окисления и испарения и не учитывает влияние продуктов этих процессов на кинематическую вязкость, поэтому в качестве показателя термоокислительной стабильности Птос предложено произведение:

или

Первое произведение учитывает эмпирическую связь между концентрацией продуктов окисления и индексом вязкости, а второе учитывает эмпирическую связь между процессами окисления, испарения и индексом вязкости.

Испытания смазочных материалов в первом варианте (при одной температуре) продолжают до достижения оптической плотности значений, равных 0,6-0,65.

Испытанию подвергались моторные масла: минеральное Роснефть Optimum 10w-40 SL/CF; частично синтетические Роснефть Maximum 10w-40 SL/CF и Лукойл Люкс 5w-40 SL/CF Результаты испытания сведены в таблицу 1 и представлены на фиг. 1. Данные зависимости описываются линейными уравнениями для масел:

Минерального Роснефть Optimum 10w-40 SG/CD (кривая 1)

Частично синтетических: Роснефть Maximum 10w-40 SL/CF (кривая 2)

Лукойл Люкс 5w-40SL/CF (кривая 3)

Анализ полученных формул (5-7) показывает, что при равном значении оптической плотности исследуемых моторных масел скорость изменения показателя Птос зависит от индекса вязкости, и она установлена более высокой для частично синтетических моторных масел. Кроме того, показатель термоокислительной стабильности может служить критерием для назначения группы эксплуатационных свойств по классификации API. Показано, что классификация минерального масла самая низкая из исследованных масел SG/SD и скорость изменения показателя термоокислительной стабильности Птос также низкая - 137,25, а классификация частично синтетических масел назначена производителями SL/CF, и скорость изменения показателей термоокислительной стабильности составила 141,03 и 148,65.

Испытания смазочных материалов по второму варианту (при трех температурах) проводили по вышеописанной технологии. Результаты исследования представлены в таблице 2 и на фиг. 2а и 2б.

Согласно данных фиг. 2а и 2б зависимости показателя термоокислительной стабильности от оптической плотности и от коэффициента термоокислительной стабильности описываются линейными уравнениями:

Уравнение (8) характеризует эмпирическую связь между продуктами окисления и индексом вязкости, а уравнения (9) - эмпирическую связь между продуктами окисления, испарения и индексом вязкости. Показано, что независимо от температуры испытания скорости изменения показателей термоокислительной стабильности и практически равны и составляют 114,29 и 113,64. Поэтому для сравнения моторных масел можно применять любой из приведенных показателей.

Испытание смазочных материалов по третьему варианту предусматривает изменение температуры в пределах от 140 до 300°С, при этом ограничиваются температурой, при которой оптическая плотность достигнет значения 0,6-0,7.

Продолжительность испытания составляет 8 часов при каждой температуре, причем термостатирование происходит без перемешивания испытуемого смазочного материала, а технология описана выше. Результаты испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL\CF сведены в таблицу 3, а также представлены на фиг. З. зависимостью показателя температурной стойкости от оптической плотности

Согласно полученных данных, зависимость показателя температурной стойкости от оптической плотности исследуемого масла описывается линейным уравнением:

Коэффициент 150 характеризует скорость изменения показателя температурной стойкости при увеличении оптической плотности.

Проведенными исследованиями смазочных материалов при одной температуре испытания установлено различие показателей термоокислительной стабильности , что позволяет их сравнивать. При испытании смазочнного материала при трех температурах, установлено, что показатель термоокислительной стабильности не зависит от температуры испытания и может определяться с применением оптической плотности ли коэффициента термоокислительной стабильности .

Смазочные материалы, термостатированные в широком интервале температур без перемешивания, характеризуют их температурную стойкость и определяются показателем температурной стойкости , что позволяет их сравнивать.

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности и температурной стойкости смазочных материалов за счет учета влияния температуры, продуктов окисления, испарения и температурной деструкции на оптические свойства и индекс вязкости, а также промышленно применимо, так как позволяет сравнивать смазочные материалы различной базовой основы, что имеет практическое значение при их выборе и совершенствовании системы классификации по группам эксплуатационных свойств и вязкостно-температурным характеристикам.


СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 324.
27.03.2016
№216.014.c5b2

Станок шарошечного бурения

Изобретение относится к горной промышленности, а именно к станкам шарошечного бурения. Станок включает мачту, буровую головку с буровым снарядом, канатно-полиспастную систему с гидроцилиндром привода подачи, гидрораспределитель гидроцилиндров привода подачи с управляющими камерами подъема и...
Тип: Изобретение
Номер охранного документа: 0002578684
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0515

Композиция для получения сорбента на основе карбамидоформальдегидной смолы

Изобретение относится к композиции для получения сорбента для очистки загрязненных объектов от нефтепродуктов. Композиция содержит следующие компоненты в масс. %: карбамидоформальдегидная смола 25-30; шлам газоочистки производства алюминия 8-12; магнетит 5-7; пенообразователь, содержащий ПАВ,...
Тип: Изобретение
Номер охранного документа: 0002587440
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.053a

Способ измерения расстояния между бортовой и наземной приёмопередающими станциями

Изобретение относится к способам измерения расстояния и может быть использовано в радионавигации и радиолокации. Достигаемый технический результат изобретения - сокращение времени и повышение точности измерения расстояния между бортовой и наземной приемопередающими станциями. Указанный...
Тип: Изобретение
Номер охранного документа: 0002587471
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2c21

Способ получения легированного оксидом висмута серебряно-оловооксидного материала для электроконтактов

Изобретение относится к способу получения легированного оксидом висмута серебряно-оловооксидного материала для электрических контактов и может найти применение в электротехнической промышленности. Способ включает сплавление металлического серебра, олова и висмута в инертной атмосфере при...
Тип: Изобретение
Номер охранного документа: 0002579846
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d16

Кормоприготовитель

Изобретение относится к сельскому хозяйству, а именно к устройствам для приготовления комбикормов. Кормоприготовитель содержит корпус в виде стоек на опорной плите, цилиндрическую рабочую камеру с торцевыми крышками, в которой расположены ведущий и ведомый элементы с измельчающими зубьями....
Тип: Изобретение
Номер охранного документа: 0002579773
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30da

Устройство для бурения скважин

Изобретение относится к горной промышленности и может быть использовано для бурения взрывных скважин на карьерах и шахтах, а также для проходки технологических скважин, в том числе при бурении сложноструктурных пород. Устройство для бурения скважин содержит корпус, вращательно-подающий механизм...
Тип: Изобретение
Номер охранного документа: 0002580118
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.367a

Способ вентиляции глубоких карьеров

Изобретение относится к горной промышленности и может быть использовано при искусственном проветривании застойных зон глубоких карьеров. Техническим результатом предлагаемого решения является повышение эффективности регулирования вентиляционных потоков и их распределения между застойными...
Тип: Изобретение
Номер охранного документа: 0002581644
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3692

Способ возведения свайного фундамента

Изобретение относится к строительству и может быть использовано при строительстве зданий и сооружений на свайных ростверках. Способ возведения свайного фундамента включает устройство ростверка на подготовленном грунтовом основании, поэтапное задавливание свай домкратами по мере возведения...
Тип: Изобретение
Номер охранного документа: 0002581853
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36ef

Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано для определения температуры застывания нефти и нефтепродуктов. Согласно заявленному решению изменение температуры испытуемого нефтепродукта, помещенного в цилиндрический стакан, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002581383
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36f6

Устройство для уплотнения снега

Изобретение относится к машине для уплотнения снега при строительстве снеголедовых дорог и грунтовых аэродромов в зимнее время. Устройство для уплотнения снега включает рабочий орган, агрегатированный с тягачом, и вибровозбудитель колебаний. Рабочий орган выполнен в виде уплотняющей плиты (1) с...
Тип: Изобретение
Номер охранного документа: 0002581667
Дата охранного документа: 20.04.2016
Показаны записи 1-10 из 43.
10.06.2013
№216.012.49c3

Способ определения смазывающей способности масел

Изобретение относится к технологии оценки качества жидких смазочных материалов, в частности к определению их смазывающей способности. В способе, заключающемся в том, что пробу масла постоянной массы нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного...
Тип: Изобретение
Номер охранного документа: 0002484463
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4dc0

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. Заявлен способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в...
Тип: Изобретение
Номер охранного документа: 0002485486
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.575a

Рабочий орган для удаления снежно-ледяного наката с поверхности дорог и аэродромов

Изобретение относится к машинам для очистки поверхности дорог и аэродромов в зимний период. Рабочий орган содержит раму, на которой шарнирно закреплены с возможностью поворота в вертикальной плоскости рычаги, несущие на свободных концах оси с режущими дисками с непрерывным односторонним...
Тип: Изобретение
Номер охранного документа: 0002487970
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5a48

Соединение трубопроводов

Изобретение относится к области соединения трубопроводов и может найти применение в конструкции соединений газонефтепроводов, водоводов и канализации. Технический результат заключается в снижении трудоемкости операций при демонтаже и замене изношенных участков трубопровода. Соединение...
Тип: Изобретение
Номер охранного документа: 0002488733
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6006

Устройство для магнитной обработки жидкости

Изобретение относится к технике магнитной обработки жидкости и может быть использовано для магнитной обработки воды и жидких нефтепродуктов и нефти. Технический результат заключается в повышении эффективности обработки жидкости в магнитном поле за счет создания вращающихся магнитного поля и...
Тип: Изобретение
Номер охранного документа: 0002490214
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78b1

Установка для улавливания паров нефти и нефтепродуктов

Изобретение относится к нефтегазовой промышленности. Установка для улавливания паров нефти и нефтепродуктов содержит холодильный блок, трубопровод, соединенный с паровой зоной резервуара и с холодильным блоком, насос, запорную арматуру и соединительные трубопроводы, при этом холодильный блок...
Тип: Изобретение
Номер охранного документа: 0002496559
Дата охранного документа: 27.10.2013
27.04.2014
№216.012.bd41

Способ повышения износостойкости пар трения

Настоящее изобретение относится к способу повышения износостойкости пар трения путем обработки смазочного материала, работающего в узлах трущихся деталей, при этом обработку смазочного материала осуществляют непосредственно в трибоузле, при этом на одну трущуюся поверхность детали трибоузла...
Тип: Изобретение
Номер охранного документа: 0002514189
Дата охранного документа: 27.04.2014
10.09.2014
№216.012.f335

Способ определения качества смазочных масел

Изобретение относится к технологии контроля качества смазочных масел при их применении и совместимости с материалами деталей машин. Способ заключается в том, что пробу масла постоянной массы нагревают при постоянной температуре с перемешиванием, через равные промежутки времени отбирают часть...
Тип: Изобретение
Номер охранного документа: 0002528083
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0e63

Инсектицидная мазь и способ ее применения для лечения миазов жвачных животных

Изобретение относится к ветеринарии, а именно к средствам и способам лечения паразитозов животных. Инсектицидная мазь для лечения миазов жвачных животных содержит, масс. %: дельтаметрин - 0,1-0,15; диазинон - 0,45-0,5; деготь березовый - 5,0-5,5 и вазелин - 93,9-94,5. При проведении...
Тип: Изобретение
Номер охранного документа: 0002535100
Дата охранного документа: 10.12.2014
10.04.2015
№216.013.3d9f

Способ повышения термоокислительной стабильности смазочных масел

Настоящее изобретение относится к способу повышения термоокислительной стабильности смазочных масел, по которому пробы смазочного масла термостатируют нагреванием в герметичном стакане без перемешивания в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую...
Тип: Изобретение
Номер охранного документа: 0002547263
Дата охранного документа: 10.04.2015
+ добавить свой РИД