×
25.08.2017
217.015.b68f

Результат интеллектуальной деятельности: Многосегментный радиальный подшипник скольжения

Вид РИД

Изобретение

№ охранного документа
0002614463
Дата охранного документа
28.03.2017
Аннотация: Изобретение относится к газотурбинным двигателям авиационного и наземного применения, в частности к опорам с расположением подшипника качения между двумя вращающимися роторами. Самоустанавливающийся многосегментный подшипник скольжения состоит из корпуса, внешнего (1) и внутреннего (3) колец, сепаратора (4), в прямоугольные окна которого установлены сегменты (2), и маслоподводящих отверстий (6). Внутреннее кольцо (3) содержит упорные буртики (5), обеспечивающие отсутствие осевого перемещения сегментов. Сегменты (2) одной стороной контактируют с возможностью скольжения по рабочей поверхности внешнего кольца (1), а противоположной стороной контактируют с возможностью скольжения по рабочей поверхности внутреннего кольца (3). Технический результат: обеспечение безотказной работы подшипника в условиях переменных нагрузок, 3 з.п. ф-лы, 5 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, в частности к опорам с расположением подшипника качения между двумя вращающимися роторами.

Из уровня техники известны роликовые радиальные подшипники с короткими цилиндрическими роликами ГОСТ 8328-75. Типы. Основные размеры, тип 2000, Издательство стандартов, 1987, с. 3. Известный роликовый подшипник содержит корпус, внутреннее и внешнее кольца, сепаратор и ролики. Недостатком роликового подшипника качения является то, что в условиях значительного интервала динамических нагрузок, вызываемых вибрациями различного происхождения воспринимаемых подшипниками опор ГТД, в случаях снижения нагрузок происходит проскальзывание роликов, а напротив, при их интенсивном увеличении возникают значительные усилия в зоне контакта тел качения и рабочих поверхностей беговых дорожек. Проскальзывание недогруженных роликов при последующем воздействии на них больших нагрузок вызывает интенсивный износ рабочих поверхностей деталей подшипников качения, что увеличивает рабочие зазоры, а это в свою очередь увеличивает динамические нагрузки и повреждение подшипников. С увеличением рабочих частот вращения роторов возрастает интенсивность повреждений, что накладывает ограничения на их использование.

Опора газотурбинного двигателя содержит подшипник, систему подвода и отвода масла для обеспечения смазки и отвода тепла. Являясь узлом энергообмена, опора работает в условиях воздействия значительных радиальных нагрузок и переменного количества подаваемого на смазку и охлаждение масла. На практике встречаются плохо прогнозируемые случаи внезапного повреждения используемых в настоящее время в данной конструкции роликовых подшипников качения.

В качестве альтернативы для использования в данных конструкциях рассматриваются сегментные подшипники скольжения из новых материалов с низким коэффициентом трения. Известен свободно устанавливающийся радиальный подшипник скольжения, несущая поверхность которого состоит из сегментов, свободно устанавливающихся относительно вала под действием давления в смазочном слое, ГОСТ ИСО 4378-1-2001. Термины, определения и классификация, Межгосударственный совет по стандартизации, метрологии и сертификации, Минск.

Наиболее близким аналогом предлагаемого изобретения является сегментный конический подшипник скольжения, содержащий корпус, опорные элементы, заключенные в сепаратор, и маслоподводящие отверстия.

/RU 1480466 C, F16C 17/06, 27.12.1995/ - прототип.

Классические подшипники скольжения не имеют недостатков подшипников качения, но обладают другими - имеют высокое тепловыделение при увеличении частоты вращения ротора из-за гидродинамического трения во взаимодействующих между собой слоях смазки масляного клина сегмента. С увеличением частоты вращения ротора тепловыделение увеличивается во второй степени.

Особенности компоновочной схемы подшипника, при которой центр приложения всех гидродинамических сил находится на расстоянии 40-45%, а шарнирный узел крепления сегмента 55-60% хорды профиля вызывает разворачивающий момент, вызывающий необходимость его компенсации за счет дополнительной нагрузки на угловые кромки сегментов, вызывающие дополнительный износ сегментов и образование канавок на керамической втулке ротора. Так же подшипники скольжения склонны к возникновению автоколебаний, приводящих к их досрочному повреждению.

Задачей настоящего изобретения является создание работоспособной конструкции опоры в условиях высоких окружных скоростей взаимодействующих поверхностей деталей подшипника и теплоподвода от деталей турбины.

Ожидаемый технический результат заключается в обеспечении безотказной работы подшипника в условиях переменных нагрузок.

Технический результат достигается тем, что многосегментный подшипник скольжения, установленный между валами роторов низкого и высокого давлений, содержит корпус, опорные элементы, заключенные в сепаратор, и маслоподводящие отверстия, по предложению сепаратор снабжен внешним кольцом и внутренним кольцом с направляющими буртиками для фиксации опорных элементов, выполненных в виде сегментов, установленных в прямоугольные окна сепаратора, при этом сегменты одной стороной контактируют с возможностью скольжения по рабочей поверхности внешнего кольца, а противоположной стороной контактируют с возможностью скольжения по рабочей поверхности внутреннего кольца. Каждый сегмент имеет двухстороннее гидродинамическое профилирование. Внутреннее и внешнее кольца выполнены стальными, а сепаратор и сегменты выполнены из бронзы. Сегменты выполнены самоустанавливающимися.

Таким образом, формируются два масляных клина, которые обеспечивают более высокие демпфирующие свойства. Скорости скольжения наружного и внутреннего колец относительно сегментов становятся почти в два раза ниже, что способствует значительному снижению тепловыделения и увеличения рабочих частот вращения ротора. Уменьшенная длинна сегментов и увеличение их количества смещает собственные частоты элементов конструкции в сторону более высоких частот, находящихся за пределами рабочего диапазона, и снижает склонность к возникновению автоколебаний. Формирование двух масляных клиньев с двух сторон сегмента позволяет при увеличении зазора, за счет увеличения угла установки сегмента относительно масляного потока компенсировать изменение зазора при выходе сегмента из нагруженной зоны. При этом масляный клин на наружном кольце и сегменте всегда будет работать в зоне наличия масла, отброшенного центробежными силами к периферийной поверхности, и устанавливать сегмент в рабочий угол, который будет таким же и между нижней стороной сегмента и беговой дорожкой внутреннего кольца. В модельном подшипнике внутреннее и внешнее кольца выполнены стальными, а сепаратор и сегменты выполнены из бронзы, что позволяет работать в диапазоне до 3000-6000 оборотов в минуту.

Изобретение проиллюстрировано фигурами 1-5.

Фиг. 1 - конструкция подшипника для межвальной опоры (общий вид).

Фиг. 2 - поперечный разрез подшипника.

Фиг. 3 - рабочее положение сегментов (вид на подшипник сбоку).

Фиг. 4 - фиксация от бокового смещения сегмента буртиками.

Фиг. 5 - фрагмент подшипника.

Самоустанавливающийся многосегментный подшипник скольжения состоит из корпуса (не показано), внешнего 1 и внутреннего 3 колец, сепаратора 4, в прямоугольные окна которого установлены сегменты 2 и маслоподводящих отверстий 6. Внутреннее кольцо 3 содержит упорные буртики 5, обеспечивающие отсутствие осевого перемещения сегментов. В предлагаемой конструкции количество сегментов значительно увеличено, и в зависимости от габаритных размеров конструкции может доходить до трех-четырех десятков. Каждый сегмент имеет двухстороннее гидродинамическое профилирование, обеспечивающее создание устойчивого масляного клина. При этом из-за уменьшения длины сегмента, а следовательно, уменьшения размеров активной зоны гидродинамического трения достигается уменьшение максимальных рабочих температур рабочих поверхностей и масляного клина.

Расположение сегментов между рабочими поверхностями наружного и внутреннего колец подшипника обеспечивает снижение скорости перемещения взаимодействующих рабочих поверхностей сегментов и колец. Одной поверхностью сегменты контактируют с рабочей поверхностью внешнего кольца, а противоположной стороной с рабочей поверхностью внутреннего кольца. Таким образом, относительная скорость скольжения внешней поверхности сегмента и наружного кольца, а также внутренней поверхности сегмента и рабочей поверхности внутреннего кольца почти в два раза ниже, чем скорости в подшипнике скольжения, рассматриваемом как прототип. Это происходит потому, что сегменты также перемещаются со скоростью сепаратора, которая значительно ниже частоты вращения ротора.

Сохранение расчетного положения каждого сегмента обеспечивается центрирующимся по наружному или внутреннему кольцу сепаратором, имеющим прямоугольные окна, в каждое из которых установлен сегмент. Сепаратор ограничивает перемещение каждого из сегментов по углу рыскания по курсу движения сегмента, а выполненные на одном из колец направляющие буртики обеспечивают отсутствие осевого перемещения сегментов, которые удерживают связанный с ним сепаратор.

Наличие большого количества сегментов определяет такое же количество масляных клиньев, что способствует снижению вероятности возникновения автоколебаний подшипника на масляном клине.

Многосегментный радиальный подшипник скольжения работает следующим образом.

Смазочная жидкость под давлением подается через маслоподводящие отверстия 6 в пространство между сегментами 2. При вращении валов роторов низкого и высокого давлений слой смазки распределяется по рабочим поверхностям сегментов. Толщина смазочного слоя зависит от величины радиальной силы, частоты вращения валов, марки жидкости и ее температуры. Сегменты 2 одной стороной скользят по рабочей поверхности внешнего кольца 1, а противоположной стороной скользят по рабочей поверхности внутреннего кольца 3. Формируются два масляных клина, которые обеспечивают более высокие демпфирующие свойства.

Конструкция компактна и легко адаптируется в опоры, ранее спроектированные для использования в их конструкции подшипников скольжения. В качестве модельного подшипника для проведения исследований работоспособности подшипников данной конструкции использовался подшипник стандартной схемы, в котором в гнезда сепаратора вместо роликов установлены сегменты. Наружное и внутреннее кольца остались стальные, сепаратор изготовлен из бронзы, модельные сегменты также изготовлены из бронзы. Испытания проводились при окружных скоростях до 20 м/с и радиальной нагрузке 50 кг, и была подтверждена его устойчивая работоспособность на данных режимах. При условии использования в качестве конструкционных керамических материалов нового поколения рабочие скорости могут достигать 100 и более м/с и при более высоком значении нагрузки.

В данной схеме реализуются все преимущества подшипников скольжения и в первую очередь большая устойчивость к воздействию вибрации роторных систем, и в то же время снижается рабочая скорость взаимодействующих рабочих поверхностей подшипника, обеспечивается стабилизация положения сегментов в подшипнике и снижение вероятности возникновения автоколебаний на масляном клине, при сохранении массово-габаритных параметров конструкции.


Многосегментный радиальный подшипник скольжения
Многосегментный радиальный подшипник скольжения
Многосегментный радиальный подшипник скольжения
Многосегментный радиальный подшипник скольжения
Источник поступления информации: Роспатент

Показаны записи 31-34 из 34.
26.08.2017
№217.015.ec4f

Способ регулирования авиационного турбореактивного двухконтурного двигателя

Изобретение относится к электронно-гидромеханическим системам автоматического управления турбореактивными двигателями. Измеряют давление газа за турбиной низкого давления, определяют отношение давлений за компрессором и за турбиной низкого давления, для каждого значения температуры воздуха на...
Тип: Изобретение
Номер охранного документа: 0002627627
Дата охранного документа: 09.08.2017
20.01.2018
№218.016.1334

Трехъярусная рабочая лопатка турбовентилятора

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов....
Тип: Изобретение
Номер охранного документа: 0002634509
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.136c

Квазираспределенная волоконно-оптическая информационно-измерительная система

Изобретение относится к устройствам для регистрации сигналов от набора датчиков физических величин на внутриволоконных решетках Брэгга в системах встроенного неразрушающего контроля. Квазираспределенная оптико-электронная информационно-измерительная система содержит источник широкополосного...
Тип: Изобретение
Номер охранного документа: 0002634490
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2b11

Устройство для измерения акустического сигнала от деталей турбомашины

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в...
Тип: Изобретение
Номер охранного документа: 0002642963
Дата охранного документа: 29.01.2018
Показаны записи 31-40 из 40.
26.08.2017
№217.015.ec4f

Способ регулирования авиационного турбореактивного двухконтурного двигателя

Изобретение относится к электронно-гидромеханическим системам автоматического управления турбореактивными двигателями. Измеряют давление газа за турбиной низкого давления, определяют отношение давлений за компрессором и за турбиной низкого давления, для каждого значения температуры воздуха на...
Тип: Изобретение
Номер охранного документа: 0002627627
Дата охранного документа: 09.08.2017
20.01.2018
№218.016.1334

Трехъярусная рабочая лопатка турбовентилятора

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов....
Тип: Изобретение
Номер охранного документа: 0002634509
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.136c

Квазираспределенная волоконно-оптическая информационно-измерительная система

Изобретение относится к устройствам для регистрации сигналов от набора датчиков физических величин на внутриволоконных решетках Брэгга в системах встроенного неразрушающего контроля. Квазираспределенная оптико-электронная информационно-измерительная система содержит источник широкополосного...
Тип: Изобретение
Номер охранного документа: 0002634490
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2b11

Устройство для измерения акустического сигнала от деталей турбомашины

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в...
Тип: Изобретение
Номер охранного документа: 0002642963
Дата охранного документа: 29.01.2018
10.05.2018
№218.016.4998

Комбинированный подшипник

Изобретение относится к машиностроению, в частности к опорам роторов газотурбинного двигателя авиационного и наземного применения, воспринимающим только радиальную нагрузку. Комбинированный подшипник содержит наружное кольцо (1), внутреннее кольцо (2), сепаратор (3), тела качения в виде роликов...
Тип: Изобретение
Номер охранного документа: 0002651406
Дата охранного документа: 19.04.2018
20.06.2018
№218.016.64a4

Способ диагностики подшипниковых опор турбореактивного двигателя

Предлагаемое изобретение относится к виброакустической диагностике турбомашин, преимущественно подшипниковых опор турбореактивного двигателя (ТРД). Способ включает измерение амплитудных значений сигнала от датчика на режиме холодной прокрутки, установление порогового уровня амплитуды сигнала по...
Тип: Изобретение
Номер охранного документа: 0002658118
Дата охранного документа: 19.06.2018
03.10.2018
№218.016.8cef

Способ обнаружения резонансных колебаний ротора газотурбинного двигателя

Изобретение относится метрологии, в частности к способам для вибрационной диагностики ротора газотурбинного двигателя. Согласно способу устанавливают датчики на неподвижных частях турбомашины, запускают двигатель и равномерно увеличивают число оборотов исследуемого ротора. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002668358
Дата охранного документа: 28.09.2018
16.02.2019
№219.016.bafc

Способ определения технического состояния датчиков пламени ионизационных

Изобретение относится к области измерительной и авиационной техники. Способ определения технического состояния датчиков пламени ионизационных в составе форсажной камеры сгорания авиационных двигателей включает обработку записи информации бортовых устройств регистрации или стендовых систем,...
Тип: Изобретение
Номер охранного документа: 0002680024
Дата охранного документа: 14.02.2019
21.03.2019
№219.016.ebec

Способ определения технического состояния токосъемников

Изобретение относится к метрологии, в частности к вибрационной диагностике. На статор токосъемника устанавливают датчики вибрации и осуществляют запись параметров вибрации и электрических сигналов на выходе из токосъемника. Выполняют анализ вибрации путем быстрого преобразования Фурье; путем...
Тип: Изобретение
Номер охранного документа: 0002682561
Дата охранного документа: 19.03.2019
13.11.2019
№219.017.e102

Сигнализатор температуры и магнитных продуктов износа в системе смазки

Изобретение относится к авиационной технике, а именно к устройствам контроля и сигнализации газотурбинных двигателей. Сигнализатор температуры и магнитных продуктов износа в системе смазки содержит корпус с установленным в нем с зазором постоянным магнитом и электрическую цепь с источником...
Тип: Изобретение
Номер охранного документа: 0002705699
Дата охранного документа: 11.11.2019
+ добавить свой РИД