×
13.01.2017
217.015.870e

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ НЕШТАТНЫХ СИТУАЦИЙ НА ПИЛОТИРУЕМОМ КОСМИЧЕСКОМ АППАРАТЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, определяют параметры текущего положения космонавтов, перемещаемых элементов относительно КА, осуществляют определение необходимых для выполнения операций на КА в случае выявления нештатной ситуации с учетом значений параметров текущего и прогнозируемого положения космонавтов. Система контроля нештатных ситуаций на пилотируемом КА включает блоки излучателей инфракрасных импульсных сигналов, размещенных на разных подвижных частях космонавтов, радиоприемные устройства со средствами сопряжения, позиционно-чувствительные детекторы и оптические системы. Техническим результатом группы изобретений является повышение эффективности контроля нештатных ситуаций. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области навигации и может быть использовано при контроле нештатных ситуаций (НС) на пилотируемом космическом аппарате (КА).

Нештатной (т.е. незапланированной, ненормальной, нежелательной), или аномальной, ситуацией в общем случае принято называть совокупность обстоятельств, обусловленную действием возмущающих факторов и представляющую угрозу выполнению задач полета или безопасности экипажа.

Контроль нештатных ситуаций на пилотируемом КА заключается в выявлении и идентификации НС, подготовке к ликвидации и непосредственной ликвидации (парировании) возникшей нештатной ситуации, что включает также действия по прекращению дальнейшего развития НС и исключению ее перехода в критическую фазу, действия по определению и устранению причины НС, действия по устранению негативных последствий, вызванных НС.

Проявление НС описывается перечнем наблюдаемых параметров состояния объекта: телеметрические (ТМ) параметры, параметры движения КА, данные, извлекаемые из телевизионной (ТВ) информации. С целью своевременного обнаружения НС и ее парирования выполняется с необходимой частотой оценка каждого из контролируемых параметров, выявление отклонений значений параметров от норм, при этом для монотонно изменяющихся параметров может выполняться выявление тенденций к выходу значений параметров за пределы норм.

Известны способ и система выявления возникшей в ходе полета нештатной ситуации (Управление космическими полетами: учеб. пособие: в 2 ч. / Соловьев В.Α., Лысенко Л.Н., Любинский В.Е. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010, стр. 213-214), согласно которым обнаруживают аномальные значения контролируемых параметров объектов и среды на борту КА и идентифицируют НС путем сравнения фактических значений параметров, входящих в состав описаний детерминированных НС, содержащих вышедший за пределы нормы контролируемый параметр, со значениями, соответствующими описаниям НС, и регистрации возникновения НС по результатам сравнения.

Реализующая данный способ система содержит блок обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА и блок идентификации НС, первый из которых содержит блок измерения контролируемых параметров объектов и среды на борту КА, блок задания допустимых значений контролируемых параметров и блок сравнения, а блок идентификации НС содержит блок выборки описания детерминированных НС, содержащих параметр, вышедший за пределы нормы, блок формирования запроса фактических значений параметров, входящих в состав выбранных описаний НС, блок сравнения фактических значений параметров со значениями, соответствующими выбранным описаниям НС, и блок регистрации возникновения НС.

Данные способ и система обеспечивают возможность своевременного выявления и идентификации НС по результатам анализа значений контролируемых параметров объектов и среды на борту КА и значений дополнительно привлекаемых параметров состояния КА.

Известны способ и система ликвидации нештатной ситуации (Управление космическими полетами: учеб. пособие: в 2 ч. / Соловьев В.А., Лысенко Л.Н., Любинский В.Е. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010, стр. 207-208 - прототип способа и системы), согласно которым обнаруживают аномальные значения контролируемых параметров объектов и среды на борту КА, идентифицируют НС, собирают необходимую информацию по НС и формируют программу действий по выходу из НС.

Реализующая данный способ система содержит последовательно соединенные блок обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА, блок идентификации НС, блок сбора необходимой информации по НС, блок формирования программы действий по выходу из НС. Блок сбора необходимой информации по НС включает блоки измерения значений необходимых параметров бортовых систем КА и параметров движения КА.

Программа действий персонала службы управления полетом и/или экипажа КА по ликвидации НС зависит как от причины и фактических особенностей стадии выявления НС, так и времени, когда могут быть начаты и реализованы действия по устранению выявленной НС. При этом информация о местонахождении членов экипажа КА в момент обнаружения НС имеет принципиально важное значение для формирования состава и циклограммы действий по устранению НС. Данные о местонахождении членов экипажа КА в ходе полета КА могут формироваться, например, по плану деятельности членов экипажа на борту КА и по результатам их докладов в ЦУП, при этом определить точное местоположение каждого члена экипажа в произвольный момент времени в общем случае не представляется возможным.

Таким образом, к недостаткам способа и системы - прототипов - относится то, что в них не обеспечивается определение точных местоположений членов экипажа КА в моменты наступления НС и последующий учет их при формировании программы действий по устранению НС.

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности контроля нештатных ситуаций на пилотируемом КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении оперативного учета точного текущего положения членов экипажа относительно систем и элементов КА при контроле нештатных ситуаций как внутри герметичного отсека КА, так и снаружи КА.

Технический результат достигается тем, что в способе контроля нештатных ситуаций на пилотируемом КА, включающем измерения параметров бортовых систем КА, измерения параметров движения КА, измерения контролируемых параметров объектов и среды на борту пилотируемого КА, сравнение контролируемых параметров с их допустимыми значениями, выявление нештатной ситуации по результатам указанного сравнения и реализацию предусмотренных операций на КА в случае выявления нештатной ситуации, дополнительно определяют параметры относительного положения местоположений излучателей инфракрасных импульсных сигналов при не менее чем одном заданном фиксированном положении подвижных частей космонавтов с размещенными на упомянутых подвижных частях по не менее чем одному излучателю инфракрасных импульсных сигналов, далее осуществляют формирование управляющих воздействий на упомянутые излучатели инфракрасных импульсных сигналов, осуществляют измерение параметров, генерируемых не менее чем четырьмя снабженными оптическими системами и размещенными в разнесенных точках, фиксированных в системе координат КА, позиционно-чувствительными детекторами инфракрасного излучения, по измеренным значениям параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения, и заданным значениям параметров расположения детекторов и оптических систем определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, по текущим значениям координат местоположений излучателей инфракрасных импульсных сигналов и параметрам относительного положения местоположений излучателей инфракрасных импульсных сигналов, определенным при заданных фиксированных положениях космонавтов, определяют параметры текущего положения космонавтов относительно КА, определяют параметры текущего положения перемещаемых элементов на КА, измеряют параметры текущего положения подвижных элементов конструкции КА и определение необходимых для выполнения операций на КА в случае выявления нештатной ситуации выполняют с учетом значений параметров текущего и прогнозируемого положения космонавтов относительно систем и элементов КА.

Технический результат достигается также тем, что система контроля нештатных ситуаций на пилотируемом КА, включающая блок обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА, блок идентификации нештатных ситуациях, блок измерения параметров бортовых систем КА, блок измерения параметров движения КА, блок формирования команд на выполнение операций при нештатных ситуациях, при этом выходы блока обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА, блока измерения параметров бортовых систем КА и блока измерения параметров движения КА соединены со входами блока идентификации нештатных ситуаций, выход которого соединен со входом блока формирования команд на выполнение операций при нештатных ситуациях, дополнительно включает не менее двух блоков излучателей инфракрасных импульсных сигналов, размещенных на разных подвижных частях космонавтов, не менее двух радиоприемных устройств, не менее двух средств сопряжения радиоустройств с блоками излучателей инфракрасных сигналов, не менее четырех блоков позиционно-чувствительных детекторов инфракрасного излучения, размещенных в разнесенных точках, фиксированных в системе координат КА, не менее четырех оптических систем, не менее четырех блоков формирования данных приема инфракрасных сигналов, не менее четырех средств сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов, не менее пяти радиоприемо-передающих устройств, блок формирования команд управления излучением и приемом инфракрасных сигналов, средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством, синхронизатор, блок задания параметров расположения детекторов инфракрасного излучения, блок задания параметров оптических систем, блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов, блок определения координат местоположений излучателей инфракрасных сигналов, блок индикации фиксированных положений космонавтов, блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавтов, блок определения параметров положения космонавтов, блок измерения параметров положения подвижных элементов конструкции КА, блок прогнозирования параметров положения подвижных элементов конструкции КА, блок определения параметров положения перемещаемых элементов на КА, блок определения действий экипажа в нештатной ситуации, при этом вход каждого i-го блока излучателя инфракрасных импульсных сигналов и выход каждого i-го радиоприемного устройства, где i=1, 2, 3, соединены соответственно с выходом и входом i-го средства сопряжения радиоустройства с блоком излучателя инфракрасных сигналов, причем первые вход и выход и вторые вход и выход каждого i-го, i=1÷4 средства сопряжения радиоустройства с блоком формирования данных приема инфракрасных сигналов соединены с соответственно выходом и входом i-го радиоприемо-передающего устройства и выходом и входом i-го блока формирования данных приема инфракрасных сигналов, второй вход которого соединен с выходом i-го блока позиционно-чувствительного детектора инфракрасного излучения, на котором установлена i-я оптическая система, при этом первые выход и вход и вторые выход и вход средства сопряжения аппаратуры с пятым радиоприемо-передающим устройством соединены соответственно с входом и выходом пятого радиоприемо-передающего устройства, входом блока определения координат местоположений излучателей инфракрасных сигналов и выходом блока формирования команд управления излучением и приемом инфракрасных сигналов, вход которого соединен с выходом синхронизатора, выход которого также соединен со вторым входом блока определения координат местоположений излучателей инфракрасных сигналов, третий вход которого соединен с выходом блока определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов, первый, второй и третий входы которого соединены с соответственно выходом блока задания параметров оптических систем, выходом блока задания параметров расположения детекторов инфракрасного излучения и третьим выходом средства сопряжения аппаратуры с пятым радиоприемо-передающим устройством, причем выход блока определения координат местоположений излучателей инфракрасных сигналов соединен с входами блока определения параметров положения космонавтов и блока определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавтов, второй вход и выход которого соединены соответственно с выходом блока индикации фиксированных положений космонавтов и вторым входом блока определения параметров положения космонавтов, выход которого соединен с четвертым входом блока идентификации нештатных ситуаций и входом блока определения действий экипажа в нештатной ситуации, выход и второй и третий входы которого соединены соответственно со вторым входом блока формирования команд на выполнение операций при нештатных ситуациях, выходом блока определения параметров положения перемещаемых элементов на КА и выходом блока прогнозирования параметров положения подвижных элементов конструкции КА, первый, второй и третий входы которого соединены с выходами соответственно блока измерения параметров положения подвижных элементов конструкции КА, блока идентификации нештатных ситуаций и блока измерения параметров движения КА.

Изобретение поясняется фиг. 1, 2, 3.

На фиг. 1 представлена блок-схема системы, реализующей предлагаемый способ, и введены следующие обозначения:

1 - член экипажа KA;

2i, i=1, 2, 3 - первый, второй и третий блоки излучателей инфракрасных импульсных сигналов (БИИИС);

3i, i=1, 2, 3 - первое, второе и третье радиоприемные устройства (РПУ);

4i, i=1, 2, 3 - первое, второе и третье средства сопряжения радиоустройств с блоками излучателей инфракрасных сигналов (ССРБИИС);

5i, i=1÷4 - с первого по четвертый блоки позиционно-чувствительных детекторов инфракрасного излучения (БПЧДИИ);

6i, i=1÷4 - с первой по четвертую оптические системы (ОС);

7i, i=1÷4 - с первого по четвертый блоки формирования данных приема инфракрасных сигналов (БФДПИС);

8i, i=1÷4 - с первого по четвертое средства сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов (ССРБФДПИС);

9i, i=1÷4, 10 - с первого по пятое радиоприемо-передающие устройства (РППУ);

11 - блок формирования команд управления излучением и приемом инфракрасных сигналов (БФКУИПИС);

12 - средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством (ССАПРППУ);

13 - синхронизатор;

14 - блок задания параметров оптических систем (БЗПОС);

15 - блок задания параметров расположения детекторов инфракрасного излучения (БЗПРДИИ);

16 - блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов (БОПНДИИИИС);

17 - блок определения координат местоположений излучателей инфракрасных сигналов (БОКМИИС);

18 - блок индикации фиксированных положений космонавтов (БИФПК);

19 - блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавтов (БОПОПИИСФПК);

20 - блок определения параметров положения космонавтов (БОППК),

21 - блок обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА (БОАЗКПОСБКА);

22 - блок идентификации нештатных ситуаций (БИНС);

23 - блок измерения параметров бортовых систем КА (БИПБСКА);

24 - блок измерения параметров движения КА (БИПДКА);

25 - блок измерения параметров положения подвижных элементов конструкции КА (БИПППЭККА);

26 - блок прогнозирования параметров положения подвижных элементов конструкции КА (БПГШПЭККА);

27 - блок определения параметров положения перемещаемых элементов на КА (БОПППЭКА);

28 - блок определения действий экипажа в нештатной ситуации (БОДЭНС);

29 - блок формирования команд на выполнение операций при нештатных ситуациях (БФКВОНС).

На фиг. 2 представлен пример циклограммы работы излучателей, детекторов, формирования и передачи данных и введены следующие обозначения:

tи - длительность инфракрасного импульсного сигнала;

tпп - длительность приема-передачи пакета данных по радиоканалу;

tпp - длительность времени прогрева детектора;

tизм - длительность времени измерения инфракрасного импульсного сигнала детектором;

tпз - длительность паузы между окончанием измерения инфракрасного импульсного сигнала детектором и началом передачи данных;

Тц - длительность цикла.

На фиг. 3 представлен пример схемы двухмерного позиционно-чувствительного детектора с четырехсторонним расположением электродов и обозначено:

X, X′, Y, Y′ - выводы детектора.

В предлагаемом способе на первом этапе осуществляется определение параметров относительного положения местоположений излучателей инфракрасных импульсных сигналов при не менее чем одном заданном фиксированном положении подвижных частей космонавтов с размещенными на упомянутых подвижных частях по не менее чем одному излучателю инфракрасных импульсных сигналов. Данное определение может быть выполнено как непосредственным измерением, например измерением расстояний между излучателями инфракрасных сигналов с помощью измерителей расстояний (например, рулетки и т.д.), так и другим возможным способом, например, как представлено в предлагаемой системе, посредством излучения и регистрации инфракрасных импульсных сигналов и последующей обработки полученных данных.

Предлагаемая система реализует следующие действия способа: осуществляют формирование управляющих воздействий на излучатели инфракрасных импульсных сигналов при не менее чем одном заданном фиксированном положении подвижных частей космонавтов с размещенными на упомянутых подвижных частях по не менее чем одному излучателю инфракрасных импульсных сигналов, осуществляют измерение параметров, генерируемых не менее чем четырьмя снабженными оптическими системами и размещенными в разнесенных точках, фиксированных в системе координат КА, позиционно-чувствительными детекторами инфракрасного излучения, по измеренным значениям параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения, и заданным значениям параметров расположения детекторов и оптических систем определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, по которым определяют параметры относительного положения местоположений излучателей инфракрасных импульсных сигналов, далее повторяют указанные действия при текущем положении космонавтов, начиная с формирования управляющих воздействий на излучатели инфракрасных импульсных сигналов, по текущим значениям координат местоположений излучателей инфракрасных импульсных сигналов и параметрам относительного положения местоположений излучателей инфракрасных импульсных сигналов, определенным при заданных фиксированных положениях космонавтов, определяют параметры текущего положения космонавтов относительно КА, измеряют параметры бортовых систем КА, измеряют параметры движения КА, измеряют контролируемые параметры объектов и среды на борту КА, определяют параметры текущего положения перемещаемых элементов на КА, измеряют параметры текущего положения подвижных элементов конструкции КА, сравнивают контролируемые параметры с их допустимыми значениями, выявляют нештатные ситуации по результатам указанного сравнения, определяют необходимые для выполнения операции на КА в случае выявления нештатной ситуации с учетом значений параметров текущего и прогнозируемого положения космонавтов относительно систем и элементов КА и формируют команды на реализацию указанных операций, при этом управление и синхронизацию моментов излучения, приема и передачи данных по результатам приема инфракрасных импульсных сигналов осуществляют по радиоканалу.

Представленная на фиг. 1 система контроля нештатных ситуаций на пилотируемом КА содержит три блока излучателей инфракрасных импульсных сигналов (БИИИС) 2i, i=1, 2, 3, три радиоприемных устройства (РПУ) 3i, i=1, 2, 3, три средства сопряжения радиоустройств с блоками излучателей инфракрасных сигналов (ССРБИИС) 4i, i=1, 2, 3, четыре блока позиционно-чувствительных детекторов инфракрасного излучения (БПЧДИИ) 5i, i=1÷4, четыре оптических системы (ОС) 6i, i=1÷4, четыре блока формирования данных приема инфракрасных сигналов (БФДПИС) 7i, i=1÷4, четыре средства сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов (ССРБФДПИС) 8i, i=1÷4, семь радиоприемо-передающих устройств (РППУ) 9i, i=1÷4, 10, 25, 27, блок формирования команд управления излучением и приемом инфракрасных сигналов (БФКУИПИС) 11, средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством (ССАПРППУ) 12, синхронизатор 13, блок задания параметров оптических систем (БЗПОС) 14, блок задания параметров расположения детекторов инфракрасного излучения (БЗПРДИИ) 15, блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов (БОГШДИИИИС) 16, блок определения координат местоположений излучателей инфракрасных сигналов (БОКМИИС) 17, блок индикации фиксированных положений космонавтов (БИФПК) 18, блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавтов (БОПОПИИСФПК) 19, блок определения параметров положения космонавтов (БОППК) 20, блок обнаружения аномальных значений контролируемых параметров объектов и среды на борту КА (БОАЗКПОСБКА) 21, блок идентификации нештатных ситуаций (БИНС) 22, блок измерения параметров бортовых систем КА (БИПБСКА) 23, блок измерения параметров движения КА (БИПДКА) 24, блок измерения параметров положения подвижных элементов конструкции КА (БИПГШЭККА) 25, блок прогнозирования параметров положения подвижных элементов конструкции КА (БППППЭККА) 26, блок определения параметров положения перемещаемых элементов на КА (БОПППЭКА) 27, блок определения действий экипажа в нештатной ситуации (БОДЭНС) 28, блок формирования команд на выполнение операций при нештатных ситуациях (БФКВОНС) 29.

Каждый i-й, i=1, 2, 3 комплект блоков БИИИС 2i, РПУ 3i и ССРБИИС 4i размещен на одной из подвижных частей члена экипажа КА, например один комплект блоков может быть размещен на туловище, а другой (другие) - на руке и/или ноге.

Каждый i-й, i=1÷4 комплект БПЧДИИ 5i, ОС 6i, БФДПИС 7i, ССРБФДПИС 8i, и РППУ 9i размещен в одной из разнесенных точек, фиксированных в системе координат КА.

Вход каждого i-го БИИИС 2i и выход каждого i-го РПУ 3i, где i=1, 2, 3, соединены соответственно с выходом и входом i-го ССРБИИС 4i.

Первые вход и выход и вторые вход и выход каждого i-го, i=1÷4 ССРБФДПИС 8i соединены соответственно с выходом и входом i-го РППУ 9i и выходом и входом i-го БФДПИС 7i, второй вход которого соединен с выходом i-го БПЧДИИ 5i, на котором установлена i-я ОС 6i.

Первые выход и вход и вторые выход и вход ССАПРППУ 12 соединены с соответственно входом и выходом пятого РППУ 10, входом БОКМИИС 17 и выходом БФКУИПИС И. Выход синхронизатора 13 соединен с входом БФКУИПИС 11 и вторым входом БОКМИИС 17.

Третий вход БОКМИИС 17 соединен с выходом БОПНДИИИИС 16.

Первый, второй и третий входы БОПНДИИИИС 16 соединены с соответственно выходом БЗПОС 14, выходом БЗПРДИИ 15, третьим выходом ССАПРППУ 12.

Выход БОКМИИС 17 соединен с входами БОППК 20 и БОПОПИИСФПК 19. Второй вход и выход БОПОПИИСФПК 19 соединены соответственно с выходом БИФПК 18 и вторым входом БОППК 20.

Выходы БОАЗКПОСБКА 21, БИПБСКА 23 и БИПДКА 24 соединены со входами БИНС 22. Выход БИНС 22 соединен со входом БФКВОНС 29.

Выход БОППК 20 соединен с четвертым входом БИНС 22 и входом БОДЭНС 28. Выход и второй и третий входы БОДЭНС 28 соединены соответственно со вторым входом БФКВОНС 29, выходом БОПППЭКА 27 и выходом БППППЭККА 26. Первый, второй и третий входы БППППЭККА 26 соединены с выходами соответственно БИПППЭККА 25, БИНС 22 и БИПДКА 24.

Средства сопряжения ССРБИИС 4, ССРБФДПИС 8, ССАПРППУ 12 могут быть выполнены в виде контроллеров (процессоров).

Работа системы осуществляется следующим образом.

Синхронизатор 13 выдает синхронизирующие сигналы на БФКУИПИС 11 и БОКМИИС 17.

БФКУИПИС 11 в соответствии с поступающими на него синхронизирующими сигналами формирует команды управления блоками БИИИС 2 и БФДПИС 7.

Команды управления от БФКУИПИС 11 на БИИИС 2 поступают через ССАПРППУ 12, РППУ 10, РПУ 3, ССРБИИС 4.

Команды управления от БФКУИПИС 11 на БФДПИС 7 поступают через ССАПРППУ 12, РППУ 10, РППУ 9, ССРБФДПИС 8.

В соответствии с поступившими командами управления БИИИС 2 излучают инфракрасные импульсные сигналы. Инфракрасное излучение данных сигналов через ОС 6 поступает на БПЧДИИ 5. БПЧДИИ 5 генерируют значения выходных параметров, соответствующие поступающему на детекторы инфракрасному излучению, и передают свои выходные данные в БФДПИС 7.

В соответствии с поступившими командами управления БФДПИС 7 принимают в задаваемые командами управления моменты времени данные от БПЧДИИ 5, формируют по ним данные со значениями координат центров световых пятен и амплитуд сигналов детекторов с указанием соответствующих номеров детекторов и в задаваемые командами управления моменты времени выдают сформированные данные на передачу через ССРБФДПИС 8, РППУ 9, РППУ 10, ССАПРППУ 12 в блоки БОПНДИИИИС 16 и БОКМИИС 17 (координаты центров световых пятен передаются в БОПНДИИИИС 16, амплитуда сигнала передается в БОКМИИС 17).

Для экономии ресурса электропитания детекторов БФДПИС 7 может выдавать управляющие команды на БПЧДИИ 5, обеспечивающие работу детекторов только в необходимые интервалы, синхронизированные с моментами излучения инфракрасных импульсных сигналов. Передача таких команд на фиг. 1 обозначена пунктирными стрелками.

На фиг. 2 представлен пример циклограммы работы излучателей, детекторов, формирования и передачи данных, в которой использованы следующие значения величин: tи=0,6 мс; tпп=10 мс; tпр=100 мс; tизм=10 мс; tпз=0…80 мс; Тц=6…60 с.

Значение tиз зависит от номера БПЧДИИ и вычисляется по формуле tпзi=(i-1)*tпп.

Представленная циклограмма обеспечивает возможность по времени приема-передачи по радиоканалу каждого пакета данных определить как номер детектора, данные с которого содержатся в принятом по радиоканалу пакете, так и номер излучателя, инфракрасный импульсный сигнал от которого был принят данным детектором.

БИИИС 2 могут быть выполнены, например, следующим образом. В каждом БИИИС 2 может быть установлено не менее четырех ИК-светодиодов с диаграммой направленности светодиода 90 градусов по половинному уровню излучаемой мощности (уровень 0,5). Светодиоды могут быть установлены на гранях усеченной пирамиды, что обеспечивает суммарную диаграмму направленности не менее 180 градусов по уровню 0,5.

Каждая ОС 6 может быть выполнена в виде малогабаритного объектива с фиксированным фокусным расстоянием, работающего в инфракрасном диапазоне.

БПЧДИИ 5 могут быть выполнены, например, следующим образом. Каждый БПЧДИИ 5 может содержать двухмерный позиционно-чувствительный детектор (датчик) с четырехсторонним расположением электродов и компенсацией нелинейности. На фиг. 3 представлен пример схемы такого детектора. Выводы X, X′, Y, Y′ детектора подаются на четыре схемы измерения тока, которые соответственно измеряют токи Ix, Ix′, Iy, Iy′. Координаты х и у центра светового пятна относительно осей координат, привязанных к детектору, вычисляются по формулам (1) и (2), при этом точка с координатами x=0 и у=0 соответствует центру детектора (L - размер стороны детектора):

Амплитуда сигнала детектора вычисляется по формуле

и характеризует интенсивность регистрируемого детектором инфракрасного излучения.

В БОПНДИИИИС 16 по координатам центров световых пятен, параметрам оптических систем от БЗПОС 14 и параметрам расположения детекторов от БЗПРДИИ 15 определяются параметры направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов и выходные данные выдаются в БОКМИИС 17. Например, по координатам светового пятна с учетом параметров установленной на детекторе оптической системы рассчитывается вектор направления луча, направленного от детектора на излучатель, в системе координат детектора, после чего данный вектор переводится в базовую систему координат (систему координат КА) с учетом параметров расположения детектора относительно базовой системы координат.

В БОКМИИС 17 в соответствии с синхронизирующими сигналами от синхронизатора 13 по амплитудам сигналов детекторов и параметрам направлений от детекторов на излучатели определяются координаты местоположений излучателей и передаются в блоки БОППК 20 и БОПОПИИСФПК 19. Например, координаты местоположений i-го излучателя инфракрасных импульсных сигналов рассчитываются как координаты точки, минимально удаленной от вышеопределенных направлений (лучей) от детекторов инфракрасного излучения на данный излучатель, выбранных с учетом амплитуд сигналов детекторов и/или взаимного углового расположения указанных направлений от детекторов на излучатели.

БИФПК 18 осуществляет индикацию фиксированных положений космонавтов, например, путем генерации соответствующих сигналов в моменты, когда члены экипажа КА принимают выпрямленное и/или согнутое/сложенное положения.

В БОПОПИИСФПК 19 по координатам местоположений излучателей инфракрасных сигналов и сигналам индикации о нахождении членов экипажа КА в заданных фиксированных положениях рассчитываются параметры относительного положения местоположений излучателей инфракрасных сигналов при фиксированных положениях космонавтов, которые передаются в БОППК 20.

В БОППК 20 на основе сопоставления текущих значений координат местоположений излучателей инфракрасных сигналов и значений параметров относительного положения излучателей инфракрасных сигналов, полученных при фиксированных положениях космонавтов, осуществляется определение текущих параметров положения космонавтов, которые передаются в БИНС 22 и БОДЭНС 28.

Определенные параметры положения каждого члена экипажа КА получены на основе определения положения как минимум двух точек, принадлежащих разным подвижным частям космонавта, и таким образом наряду с местоположением космонавта несут информацию как об ориентации космонавта относительно элементов КА, так и о взаимном относительном положении данных частей космонавта, т.е. информацию о текущей форме и ориентации космонавта, например выпрямлен или согнут/сложен космонавт с указанием возможного диапазона углов между подвижными частями космонавта и в какую сторону он сориентирован. При этом объем и точность информации о текущей форме и ориентации космонавта определяется количеством излучателей инфракрасных сигналов, установленных на разных подвижных частях космонавта, и количеством фиксированных положений подвижных частей космонавта, при которых определяются запоминаемые параметры относительного положения излучателей инфракрасных импульсных сигналов, используемые в дальнейшем для определения текущих параметров положения космонавта.

В БОАЗКПОСБКА 21 осуществляется обнаружение аномальных значений контролируемых параметров объектов и среды на борту КА путем измерения контролируемых параметров объектов и среды на борту КА и сравнения их с задаваемыми допустимыми значениями.

В БИПБСКА 23 осуществляется измерение параметров бортовых систем КА, используемых для идентификации НС.

В БИПДКА 24 осуществляется измерение параметров движения КА в космическом пространстве, включая движение относительно Земли, небесных тел и объектов (Солнце и т.д.), например с использованием систем навигационных измерений КА и спутниковой навигации.

В БИНС 22 осуществляется идентификация нештатных ситуаций посредством анализа обнаруженных аномальных значений контролируемых параметров объектов и среды на борту КА, измерений дополнительно привлекаемых параметров бортовых систем КА и параметров движения КА и с учетом описаний детерминированных НС, полученных текущих параметров положений членов экипажа КА. По результатам идентификации НС осуществляется регистрация возникновения НС и информация о зарегистрированной НС передается в БФКВОНС 29 и БППППЭККА 26.

В БОПППЭКА 27 осуществляется определение параметров положения перемещаемых элементов на КА (грузов, оборудования, элементов конструкции и т.д.), например посредством использования базы данных (БД) перемещаемых элементов, в которой указываются все перемещаемые элементы и их текущие положения.

В БИПППЭККА 25 осуществляется измерение параметров положения подвижных элементов конструкции КА (вращающихся солнечных батарей (СБ) и радиаторов, штанг, манипуляторов и т.д.), например, по данным ТМ информации.

В БППГШЭККА 26 по измеренным параметрам орбитального движения КА и измеренным параметрам положения подвижных элементов конструкции КА осуществляется прогнозирование параметров положения подвижных элементов конструкции КА, выполняемое в соответствии с логикой управления положением подвижных элементов конструкции, применяемой в зарегистрированной НС.

В БОДЭНС 28 выполняется определение требуемых действий экипажа в выявленной нештатной ситуации включая маршруты необходимых перемещений членов экипажа относительно систем и элементов КА, определяемых с учетом данных о текущем положении космонавтов, данных о положении перемещаемых элементов на КА и данных о прогнозируемых положениях подвижных элементов конструкции КА. Указанные перемещаемые и подвижные элементы КА могут как создавать помехи планируемому перемещению космонавтов, так и определять данные перемещения.

В БФКВОНС 29 осуществляется формирование команд на выполнение операций в выявленной нештатной ситуации, в том числе с учетом определенных действий экипажа КА.

Современный уровень развития техники обеспечивает малые габаритные и весовые характеристики как каждого комплекта аппаратуры, размещаемого на членах экипажа, так и оборудования, размещаемого в разнесенных точках на КА.

Например, каждый комплект аппаратуры, размещаемый в одной из точек на космонавте и выполненный на основе ИК-светодиодов L9337 производства фирмы Hamamatsu, имеет вес не более 0,025 кг и размер не более 40×40×40 мм. Каждый комплект аппаратуры, размещаемый в одной из разнесенных точек на КА и выполненный на основе двухмерного позиционно-чувствительного детектора S5991-01 производства фирмы Hamamatsu и объектива BL02820M13 производства фирмы Beward, имеет массу не более 0,5 кг и размер не более 70×100×200 мм.

Опишем технический эффект предлагаемого изобретения.

Предложенные способ и система повышают эффективность контроля нештатных ситуаций на пилотируемом КА путем обеспечения оперативного учета точного положения членов экипажа относительно систем и элементов КА при контроле нештатных ситуаций - при выявлении нештатной ситуации, при определении необходимых для выполнения операций на КА в случае выявления нештатной ситуации, при реализации предусмотренных операций на КА в случае выявления нештатной ситуации - как внутри герметичного отсека КА, так и в открытом космическом пространстве снаружи КА, при этом обеспечивается учет параметров текущего положения каждого космонавта как объекта с подвижными частями, включая информацию о форме и ориентации космонавта, а предложенные для этого технические средства никак не ограничивают перемещения космонавта и не создают помех его деятельности на борту КА.

Предлагаемые способ и система обеспечивают возможность удобного и быстрого наращивания количества используемых излучателей и детекторов излучения, что позволяет быстро и экономично адаптировать систему как к изменению конфигурации КА, так и к увеличению числа космонавтов и увеличению количества размещаемых на космонавтах излучателей.

Достижение технического результата в предложенном изобретении обеспечивается за счет, в том числе:

- использования при выявлении нештатной ситуации, определении необходимых для выполнения операций на КА и их реализации определяемых параметров положения членов экипажа КА относительно систем и элементов КА, включая информацию о форме и ориентации членов экипажа КА,

- учета определяемых текущих положений перемещаемых элементов на КА,

- использования измерений текущего положения подвижных элементов конструкции КА и измерений параметров движения КА для прогнозирования положения подвижных элементов конструкции КА вдоль маршрута перемещения членов экипажа КА,

- использования инфракрасных импульсных сигналов, излучаемых излучателями, размещенными предложенным способом на членах экипажа КА, регистрации излученного инфракрасного излучения позиционно-чувствительными детекторами инфракрасного излучения, размещенными предложенным способом на КА, измерения генерируемых ими параметров и использования предложенной методики применения измеренных параметров, включая сопоставление определенного текущего положения излучателей с параметрами относительного положения излучателей, определенными при заданных фиксированных положениях членов экипажа КА,

- использования радиоканала для управления и синхронизации моментов излучения, приема и передачи данных по результатам приема инфракрасных импульсных сигналов,

- малых габаритных и весовых характеристик комплектов аппаратуры, размещаемых на членах экипажа и в разнесенных точках на КА.

В том числе достижение технического результата в предложенной системе обеспечивается введением предложенных блоков, а также введением предложенных функциональных связей между блоками и предложенным исполнением уже известных блоков.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ КОНТРОЛЯ НЕШТАТНЫХ СИТУАЦИЙ НА ПИЛОТИРУЕМОМ КОСМИЧЕСКОМ АППАРАТЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ НЕШТАТНЫХ СИТУАЦИЙ НА ПИЛОТИРУЕМОМ КОСМИЧЕСКОМ АППАРАТЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ НЕШТАТНЫХ СИТУАЦИЙ НА ПИЛОТИРУЕМОМ КОСМИЧЕСКОМ АППАРАТЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ НЕШТАТНЫХ СИТУАЦИЙ НА ПИЛОТИРУЕМОМ КОСМИЧЕСКОМ АППАРАТЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 381.
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
20.02.2019
№219.016.c05f

Способ диагностики нерастворенных газовых включений в заправленных рабочими телами гидравлических системах космических аппаратов

Изобретение относится к космической технике и предназначено для использования, преимущественно, в гидравлических системах терморегулирования пилотируемых космических аппаратов в ходе орбитального полета. Предлагаемый способ включает предварительную разгрузку рабочего тела (РТ) системы от...
Тип: Изобретение
Номер охранного документа: 0002304072
Дата охранного документа: 10.08.2007
20.02.2019
№219.016.c0c1

Устройство подачи термостатирующей среды в отсек ракеты-носителя

Изобретение относится к устройствам воздушного термостатирования объектов, например приборов системы управления полезного груза и других объектов, размещаемых в отсеках ракетных блоков и блоках космической головной части ракеты-носителя, в период их предстартовой подготовки. Устройство согласно...
Тип: Изобретение
Номер охранного документа: 0002368548
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cf47

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Релейный регулятор содержит первое и второе сравнивающие устройства, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002403607
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
Показаны записи 301-310 из 356.
10.05.2018
№218.016.4ef1

Способ контроля действий находящегося на борту космического аппарата космонавта

Изобретение относится к управлению космическим аппаратом (КА) с участием космонавта (К). Способ включает определение параметров местоположения К, их сравнение с задаваемыми параметрами и формирование команд К. При этом измеряют параметры текущего положения и ориентации головы К относительно...
Тип: Изобретение
Номер охранного документа: 0002652721
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.50e7

Способ контроля готовности космонавта к выполнению полетных операций

Изобретение относится к методам обучения экипажей космических аппаратов. Способ включает воспроизведение заданий одному или нескольким космонавтам (К), регистрацию параметров, характеризующих выполнение К заданий, сравнение полученных данных с задаваемыми значениями и определение уровня...
Тип: Изобретение
Номер охранного документа: 0002653219
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.526f

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и...
Тип: Изобретение
Номер охранного документа: 0002653891
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.52b6

Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором...
Тип: Изобретение
Номер охранного документа: 0002653890
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
26.07.2018
№218.016.7570

Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению...
Тип: Изобретение
Номер охранного документа: 0002662371
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
29.08.2018
№218.016.8138

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по...
Тип: Изобретение
Номер охранного документа: 0002665145
Дата охранного документа: 28.08.2018
07.09.2018
№218.016.843a

Устройство для хранения и идентификации перемещаемых объектов на космическом аппарате

Изобретение относится к области хранения, идентификации и определения текущего местоположения хранящихся на космическом аппарате (КА) перемещаемых объектов хранения. Технический результат заключается в расширении арсенала средств. Устройство содержит конструктивные элементы для размещения...
Тип: Изобретение
Номер охранного документа: 0002665914
Дата охранного документа: 04.09.2018
+ добавить свой РИД